EasyCV/easycv/datasets/pose/data_sources/coco.py

355 lines
11 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# Adapt from https://github.com/open-mmlab/mmpose/blob/master/mmpose/datasets/datasets/top_down/topdown_coco_dataset.py
import logging
import os
import json_tricks as json
import numpy as np
from easycv.datasets.registry import DATASOURCES
from easycv.datasets.utils.download_data.download_coco import (
check_data_exists, download_coco)
from easycv.framework.errors import ValueError
from .top_down import PoseTopDownSource
COCO_DATASET_INFO = dict(
dataset_name='coco',
paper_info=dict(
author='Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and '
'Hays, James and Perona, Pietro and Ramanan, Deva and '
'Doll{\'a}r, Piotr and Zitnick, C Lawrence',
title='Microsoft coco: Common objects in context',
container='European conference on computer vision',
year='2014',
homepage='http://cocodataset.org/'),
keypoint_info={
0:
dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
1:
dict(
name='left_eye',
id=1,
color=[51, 153, 255],
type='upper',
swap='right_eye'),
2:
dict(
name='right_eye',
id=2,
color=[51, 153, 255],
type='upper',
swap='left_eye'),
3:
dict(
name='left_ear',
id=3,
color=[51, 153, 255],
type='upper',
swap='right_ear'),
4:
dict(
name='right_ear',
id=4,
color=[51, 153, 255],
type='upper',
swap='left_ear'),
5:
dict(
name='left_shoulder',
id=5,
color=[0, 255, 0],
type='upper',
swap='right_shoulder'),
6:
dict(
name='right_shoulder',
id=6,
color=[255, 128, 0],
type='upper',
swap='left_shoulder'),
7:
dict(
name='left_elbow',
id=7,
color=[0, 255, 0],
type='upper',
swap='right_elbow'),
8:
dict(
name='right_elbow',
id=8,
color=[255, 128, 0],
type='upper',
swap='left_elbow'),
9:
dict(
name='left_wrist',
id=9,
color=[0, 255, 0],
type='upper',
swap='right_wrist'),
10:
dict(
name='right_wrist',
id=10,
color=[255, 128, 0],
type='upper',
swap='left_wrist'),
11:
dict(
name='left_hip',
id=11,
color=[0, 255, 0],
type='lower',
swap='right_hip'),
12:
dict(
name='right_hip',
id=12,
color=[255, 128, 0],
type='lower',
swap='left_hip'),
13:
dict(
name='left_knee',
id=13,
color=[0, 255, 0],
type='lower',
swap='right_knee'),
14:
dict(
name='right_knee',
id=14,
color=[255, 128, 0],
type='lower',
swap='left_knee'),
15:
dict(
name='left_ankle',
id=15,
color=[0, 255, 0],
type='lower',
swap='right_ankle'),
16:
dict(
name='right_ankle',
id=16,
color=[255, 128, 0],
type='lower',
swap='left_ankle')
},
skeleton_info={
0:
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
1:
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
2:
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
3:
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
4:
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
5:
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
6:
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
7:
dict(
link=('left_shoulder', 'right_shoulder'),
id=7,
color=[51, 153, 255]),
8:
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
9:
dict(
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
10:
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
11:
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
12:
dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
13:
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
14:
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
15:
dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
16:
dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
17:
dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
18:
dict(
link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255])
},
joint_weights=[
1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5,
1.5
],
sigmas=[
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
])
@DATASOURCES.register_module()
class PoseTopDownSourceCoco(PoseTopDownSource):
"""CocoSource for top-down pose estimation.
`Microsoft COCO: Common Objects in Context' ECCV'2014
More details can be found in the `paper
<https://arxiv.org/abs/1405.0312>`__ .
The source loads raw features to build a data meta object
containing the image info, annotation info and others.
COCO keypoint indexes::
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle'
Args:
ann_file (str): Path to the annotation file.
img_prefix (str): Path to a directory where images are held.
Default: None.
data_cfg (dict): config
dataset_info (DatasetInfo): A class containing all dataset info.
test_mode (bool): Store True when building test or
validation dataset. Default: False.
"""
def __init__(self,
ann_file,
img_prefix,
data_cfg,
dataset_info=None,
test_mode=False):
if dataset_info is None:
logging.info(
'dataset_info is missing, use default coco dataset info')
dataset_info = COCO_DATASET_INFO
self.use_gt_bbox = data_cfg.get('use_gt_bbox', True)
self.bbox_file = data_cfg.get('bbox_file', None)
self.det_bbox_thr = data_cfg.get('det_bbox_thr', 0.0)
super().__init__(
ann_file,
img_prefix,
data_cfg,
dataset_info=dataset_info,
test_mode=test_mode)
def _get_db(self):
"""Load dataset."""
if (not self.test_mode) or self.use_gt_bbox:
# use ground truth bbox
gt_db = self._load_keypoint_annotations()
else:
# use bbox from detection
gt_db = self._load_coco_person_detection_results()
return gt_db
def _load_coco_person_detection_results(self):
"""Load coco person detection results."""
num_joints = self.ann_info['num_joints']
all_boxes = None
with open(self.bbox_file, 'r') as f:
all_boxes = json.load(f)
if not all_boxes:
raise ValueError('=> Load %s fail!' % self.bbox_file)
print(f'=> Total boxes: {len(all_boxes)}')
kpt_db = []
bbox_id = 0
for det_res in all_boxes:
if det_res['category_id'] != 1:
continue
image_file = os.path.join(self.img_prefix,
self.id2name[det_res['image_id']])
box = det_res['bbox']
score = det_res['score']
if score < self.det_bbox_thr:
continue
center, scale = self._xywh2cs(*box[:4])
joints_3d = np.zeros((num_joints, 3), dtype=np.float32)
joints_3d_visible = np.ones((num_joints, 3), dtype=np.float32)
kpt_db.append({
'image_file': image_file,
'center': center,
'scale': scale,
'rotation': 0,
'bbox': box[:4],
'bbox_score': score,
'dataset': self.dataset_name,
'joints_3d': joints_3d,
'joints_3d_visible': joints_3d_visible,
'bbox_id': bbox_id
})
bbox_id = bbox_id + 1
print(f'=> Total boxes after filter '
f'low score@{self.det_bbox_thr}: {bbox_id}')
return kpt_db
@DATASOURCES.register_module()
class PoseTopDownSourceCoco2017(PoseTopDownSourceCoco):
"""
Args:
path: target dir
download: whether download
split: train or val
data_cfg (dict): config
dataset_info (DatasetInfo): A class containing all dataset info.
test_mode (bool): Store True when building test or
validation dataset. Default: False.
"""
def __init__(self,
data_cfg,
path='',
download=True,
split='train',
dataset_info=None,
test_mode=False):
if download:
if os.path.isdir(path):
path = download_coco(
'coco2017', split=split, target_dir=path, task='pose')
else:
path = download_coco('coco2017', split=split, task='pose')
else:
if os.path.isdir(path):
path = check_data_exists(path, split, 'pose')
else:
raise KeyError('your path is None')
super().__init__(
ann_file=path['ann_file'],
img_prefix=path['img_prefix'],
data_cfg=data_cfg,
dataset_info=dataset_info,
test_mode=test_mode)