EasyCV/easycv/models/heads/contrastive_head.py

58 lines
1.5 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import numpy as np
import torch
import torch.nn as nn
from ..registry import HEADS
@HEADS.register_module
class ContrastiveHead(nn.Module):
'''Head for contrastive learning.
'''
def __init__(self, temperature=0.1):
super(ContrastiveHead, self).__init__()
self.criterion = nn.CrossEntropyLoss()
self.temperature = temperature
def forward(self, pos, neg):
'''
Args:
pos (Tensor): Nx1 positive similarity
neg (Tensor): Nxk negative similarity
'''
N = pos.size(0)
logits = torch.cat((pos, neg), dim=1)
logits /= self.temperature
labels = torch.zeros((N, ), dtype=torch.long).cuda()
losses = dict()
losses['loss'] = self.criterion(logits, labels)
return losses
@HEADS.register_module
class DebiasedContrastiveHead(nn.Module):
def __init__(self, temperature=0.1, tau=0.1):
super(DebiasedContrastiveHead, self).__init__()
self.temperature = temperature
self.tau = tau
def forward(self, pos, neg):
'''
Args:
pos (Tensor): Nx1 positive similarity
neg (Tensor): Nxk negative similarity
'''
bs = pos.size(0)
N = bs * 2 - 2
Ng = (-self.tau * N * pos + neg.sum(dim=-1)) / (1 - self.tau)
Ng = torch.clamp(Ng, min=N * np.e**(-1 / self.temperature))
loss = (-torch.log(pos / (pos + Ng))).mean()
losses = dict()
losses['loss'] = loss
return losses