EasyCV/easycv/models/utils/res_layer.py

90 lines
3.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import torch.nn as nn
from .conv_module import build_conv_layer
from .norm import build_norm_layer
class ResLayer(nn.Sequential):
"""ResLayer to build ResNet style backbone.
Args:
block (nn.Module): Residual block used to build ResLayer.
num_blocks (int): Number of blocks.
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
expansion (int, optional): The expansion for BasicBlock/Bottleneck.
If not specified, it will firstly be obtained via
``block.expansion``. If the block has no attribute "expansion",
the following default values will be used: 1 for BasicBlock and
4 for Bottleneck. Default: None.
stride (int): stride of the first block. Default: 1.
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False
conv_cfg (dict, optional): dictionary to construct and config conv
layer. Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
"""
def __init__(self,
block,
num_blocks,
in_channels,
out_channels,
expansion=None,
stride=1,
avg_down=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
**kwargs):
self.block = block
self.expansion = 4
downsample = None
if stride != 1 or in_channels != out_channels:
downsample = []
conv_stride = stride
if avg_down and stride != 1:
conv_stride = 1
downsample.append(
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
ceil_mode=True,
count_include_pad=False))
downsample.extend([
build_conv_layer(
conv_cfg,
in_channels,
out_channels,
kernel_size=1,
stride=conv_stride,
bias=False),
build_norm_layer(norm_cfg, out_channels)[1]
])
downsample = nn.Sequential(*downsample)
layers = []
layers.append(
block(
in_channels=in_channels,
out_channels=out_channels,
expansion=self.expansion,
stride=stride,
downsample=downsample,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
in_channels = out_channels
for i in range(1, num_blocks):
layers.append(
block(
in_channels=in_channels,
out_channels=out_channels,
expansion=self.expansion,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
super(ResLayer, self).__init__(*layers)