mirror of https://github.com/alibaba/EasyCV.git
300 lines
11 KiB
Python
300 lines
11 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
"""
|
|
isort:skip_file
|
|
"""
|
|
from __future__ import division
|
|
import argparse
|
|
import importlib
|
|
import json
|
|
import os
|
|
import os.path as osp
|
|
import sys
|
|
sys.path.append(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
|
|
sys.path.append(
|
|
os.path.abspath(
|
|
osp.join(os.path.dirname(os.path.dirname(__file__)), '../')))
|
|
|
|
# adapt to torchacc, init before some torch imports
|
|
from easycv.utils.torchacc_util import is_torchacc_enabled
|
|
if is_torchacc_enabled():
|
|
from easycv.toolkit.torchacc import torchacc_init
|
|
torchacc_init()
|
|
|
|
import time
|
|
import requests
|
|
import torch
|
|
import torch.distributed as dist
|
|
from mmcv.runner import init_dist
|
|
|
|
from easycv import __version__
|
|
from easycv.apis import init_random_seed, set_random_seed, train_model
|
|
from easycv.datasets import build_dataloader, build_dataset
|
|
from easycv.datasets.utils import is_dali_dataset_type
|
|
from easycv.file import io
|
|
from easycv.models import build_model
|
|
from easycv.utils.collect_env import collect_env
|
|
from easycv.utils.logger import get_root_logger
|
|
from easycv.utils.mmlab_utils import dynamic_adapt_for_mmlab
|
|
from easycv.utils.config_tools import traverse_replace
|
|
from easycv.utils.config_tools import (CONFIG_TEMPLATE_ZOO,
|
|
mmcv_config_fromfile, rebuild_config)
|
|
from easycv.utils.dist_utils import get_device
|
|
from easycv.utils.setup_env import setup_multi_processes
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Train a model')
|
|
parser.add_argument(
|
|
'config', help='train config file path', type=str, default=None)
|
|
parser.add_argument(
|
|
'--work_dir',
|
|
type=str,
|
|
default=None,
|
|
help='the dir to save logs and models')
|
|
parser.add_argument(
|
|
'--resume_from', help='the checkpoint file to resume from')
|
|
parser.add_argument('--load_from', help='the checkpoint file to load from')
|
|
parser.add_argument(
|
|
'--pretrained', default=None, help='pretrained model file')
|
|
parser.add_argument(
|
|
'--gpus',
|
|
type=int,
|
|
default=1,
|
|
help='number of gpus to use '
|
|
'(only applicable to non-distributed training)')
|
|
parser.add_argument('--seed', type=int, default=None, help='random seed')
|
|
parser.add_argument(
|
|
'--diff-seed',
|
|
action='store_true',
|
|
help='Whether or not set different seeds for different ranks')
|
|
parser.add_argument('--fp16', action='store_true', help='use fp16')
|
|
parser.add_argument(
|
|
'--deterministic',
|
|
action='store_true',
|
|
help='whether to set deterministic options for CUDNN backend.')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
parser.add_argument(
|
|
'--port',
|
|
type=int,
|
|
default=29500,
|
|
help='port only works when launcher=="slurm"')
|
|
|
|
parser.add_argument(
|
|
'--model_type',
|
|
type=str,
|
|
default=None,
|
|
help=
|
|
'parameterize param when user specific choose a model config template like CLASSIFICATION: classification.py'
|
|
)
|
|
parser.add_argument(
|
|
'--user_config_params',
|
|
nargs=argparse.REMAINDER,
|
|
default=None,
|
|
help='modify config options using the command-line')
|
|
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
if args.model_type is not None:
|
|
assert args.model_type in CONFIG_TEMPLATE_ZOO, 'model_type must be in [%s]' % (
|
|
', '.join(CONFIG_TEMPLATE_ZOO.keys()))
|
|
print('model_type=%s, config file will be replaced by %s' %
|
|
(args.model_type, CONFIG_TEMPLATE_ZOO[args.model_type]))
|
|
args.config = CONFIG_TEMPLATE_ZOO[args.model_type]
|
|
|
|
if args.config.startswith('http'):
|
|
|
|
r = requests.get(args.config)
|
|
# download config in current dir
|
|
tpath = args.config.split('/')[-1]
|
|
while not osp.exists(tpath):
|
|
try:
|
|
with open(tpath, 'wb') as code:
|
|
code.write(r.content)
|
|
except:
|
|
pass
|
|
|
|
args.config = tpath
|
|
cfg = mmcv_config_fromfile(args.config)
|
|
|
|
if args.user_config_params is not None:
|
|
assert args.model_type is not None, 'model_type must be setted'
|
|
# rebuild config by user config params
|
|
cfg = rebuild_config(cfg, args.user_config_params)
|
|
|
|
# set multi-process settings
|
|
setup_multi_processes(cfg)
|
|
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
# update configs according to CLI args
|
|
# if args.work_dir is not None and cfg.get('work_dir', None) is None:
|
|
if args.work_dir is not None:
|
|
cfg.work_dir = args.work_dir
|
|
|
|
# if `work_dir` is oss path, redirect `work_dir` to local path, add `oss_work_dir` point to oss path,
|
|
# and use osssync hook to upload log and ckpt in work_dir to oss_work_dir
|
|
if cfg.work_dir.startswith('oss://'):
|
|
cfg.oss_work_dir = cfg.work_dir
|
|
cfg.work_dir = osp.join('work_dirs',
|
|
cfg.work_dir.replace('oss://', ''))
|
|
else:
|
|
cfg.oss_work_dir = None
|
|
|
|
if args.resume_from is not None:
|
|
cfg.resume_from = args.resume_from
|
|
if args.load_from is not None:
|
|
cfg.load_from = args.load_from
|
|
|
|
# dynamic adapt mmdet models
|
|
dynamic_adapt_for_mmlab(cfg)
|
|
|
|
cfg.gpus = args.gpus
|
|
|
|
# check memcached package exists
|
|
if importlib.util.find_spec('mc') is None:
|
|
traverse_replace(cfg, 'memcached', False)
|
|
|
|
# check oss_config and init oss io
|
|
if cfg.get('oss_io_config', None) is not None:
|
|
io.access_oss(**cfg.oss_io_config)
|
|
# init distributed env first, since logger depends on the dist info.
|
|
if not is_torchacc_enabled():
|
|
if args.launcher == 'none':
|
|
assert cfg.model.type not in \
|
|
['DeepCluster', 'MOCO', 'SimCLR', 'ODC', 'NPID'], \
|
|
'{} does not support non-dist training.'.format(cfg.model.type)
|
|
else:
|
|
if args.launcher == 'slurm':
|
|
cfg.dist_params['port'] = args.port
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
|
|
distributed = torch.cuda.is_available(
|
|
) and torch.distributed.is_initialized()
|
|
|
|
# create work_dir
|
|
if not io.exists(cfg.work_dir):
|
|
io.makedirs(cfg.work_dir)
|
|
# init the logger before other steps
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
log_file = osp.join(cfg.work_dir, '{}.log'.format(timestamp))
|
|
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
|
|
|
|
# init the meta dict to record some important information such as
|
|
# environment info and seed, which will be logged
|
|
meta = dict()
|
|
# log env info
|
|
env_info_dict = collect_env()
|
|
env_info = '\n'.join([('{}: {}'.format(k, v))
|
|
for k, v in env_info_dict.items()])
|
|
dash_line = '-' * 60 + '\n'
|
|
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
|
|
dash_line)
|
|
meta['env_info'] = env_info
|
|
|
|
# log some basic info
|
|
logger.info('Distributed training: {}'.format(distributed))
|
|
logger.info('Config:\n{}'.format(cfg.text))
|
|
logger.info('Config Dict:\n{}'.format(json.dumps(cfg._cfg_dict)))
|
|
logger.info('GPU INFO : {}'.format(torch.cuda.get_device_name(0)))
|
|
|
|
# set random seeds
|
|
# Using different seeds for different ranks may reduce accuracy
|
|
seed = init_random_seed(args.seed, device=get_device())
|
|
seed = seed + dist.get_rank() if args.diff_seed else seed
|
|
if is_torchacc_enabled():
|
|
assert seed is not None, 'Must provide `seed` to sync model initializer if use torchacc!'
|
|
|
|
if seed is not None:
|
|
logger.info('Set random seed to {}, deterministic: {}'.format(
|
|
seed, args.deterministic))
|
|
set_random_seed(seed, deterministic=args.deterministic)
|
|
cfg.seed = seed
|
|
meta['seed'] = seed
|
|
|
|
if args.pretrained is not None:
|
|
assert isinstance(args.pretrained, str)
|
|
cfg.model.pretrained = args.pretrained
|
|
model = build_model(cfg.model)
|
|
print(model)
|
|
|
|
if 'stage' in cfg.model and cfg.model['stage'] == 'EDGE':
|
|
from easycv.utils.flops_counter import get_model_info
|
|
get_model_info(model, cfg.img_scale, cfg.model, logger)
|
|
|
|
assert len(cfg.workflow) == 1, 'Validation is called by hook.'
|
|
if cfg.checkpoint_config is not None:
|
|
# save easycv version, config file content and class names in
|
|
# checkpoints as meta data
|
|
cfg.checkpoint_config.meta = dict(
|
|
easycv_version=__version__, config=cfg.text)
|
|
|
|
# build dataloader
|
|
if not is_dali_dataset_type(cfg.data.train['type']):
|
|
shuffle = cfg.data.train.pop('shuffle', True)
|
|
print(f'data shuffle: {shuffle}')
|
|
|
|
# for odps data_source
|
|
if cfg.data.train.data_source.type == 'OdpsReader' and cfg.data.train.data_source.get(
|
|
'odps_io_config', None) is None:
|
|
cfg.data.train.data_source['odps_io_config'] = cfg.get(
|
|
'odps_io_config', None)
|
|
assert (
|
|
cfg.data.train.data_source.get('odps_io_config',
|
|
None) is not None
|
|
), 'odps config must be set in cfg file / cfg.data.train.data_source !!'
|
|
shuffle = False
|
|
|
|
datasets = [build_dataset(cfg.data.train)]
|
|
data_loaders = [
|
|
build_dataloader(
|
|
ds,
|
|
cfg.data.imgs_per_gpu,
|
|
cfg.data.workers_per_gpu,
|
|
cfg.gpus,
|
|
dist=distributed,
|
|
shuffle=shuffle,
|
|
replace=getattr(cfg.data, 'sampling_replace', False),
|
|
seed=cfg.seed,
|
|
drop_last=getattr(cfg.data, 'drop_last', False),
|
|
reuse_worker_cache=cfg.data.get('reuse_worker_cache', False),
|
|
persistent_workers=cfg.data.get('persistent_workers', False),
|
|
collate_hooks=cfg.data.get('train_collate_hooks', []))
|
|
for ds in datasets
|
|
]
|
|
else:
|
|
default_args = dict(
|
|
batch_size=cfg.data.imgs_per_gpu,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
distributed=distributed)
|
|
dataset = build_dataset(cfg.data.train, default_args)
|
|
data_loaders = [dataset.get_dataloader()]
|
|
|
|
# # add an attribute for visualization convenience
|
|
train_model(
|
|
model,
|
|
data_loaders,
|
|
cfg,
|
|
distributed=distributed,
|
|
timestamp=timestamp,
|
|
meta=meta,
|
|
use_fp16=args.fp16)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|