mirror of https://github.com/alibaba/EasyCV.git
2.3 KiB
2.3 KiB
Prepare Datasets
- [Prepare Cifar](#Prepare Cifar)
- [Prepare Imagenet](#Prepare Imagenet)
- [Prepare Imagenet-TFrecords](#Prepare Imagenet-TFrecords)
- [Prepare COCO](#Prepare COCO)
- [Prepare PAI-Itag detection](#Prepare PAI-Itag detection)
Prepare Cifar
Download dataset cifar10 and uncompress files to data/cifar
, directory structure is as follows:
data/cifar
└── cifar-10-batches-py
├── batches.meta
├── data_batch_1
├── data_batch_2
├── data_batch_3
├── data_batch_4
├── data_batch_5
├── readme.html
├── read.py
└── test_batch
Prepare Imagenet
-
Go to the download-url, Register an account and log in .
-
Download the following files:
-
Training images (Task 1 & 2). 138GB.
-
Validation images (all tasks). 6.3GB.
-
-
Unzip the downloaded file.
-
Using this scrip to get data meta.
Prepare Imagenet-TFrecords
- Go to the download-url, Register an account and log in .
- The dataset is divided into two parts, part0 (79GB) and part1 (75GB), you need download all of them.
Prepare COCO
Download COCO2017 dataset to data/coco
, directory structure is as follows
data/coco
├── annotations
├── train2017
└── val2017
Prepare PAI-Itag detection
Download SmallCOCO dataset to data/coco
,
directory structure is as follows:
data/coco/
├── train2017
├── train2017_20_local.manifest
├── val2017
└── val2017_20_local.manifest
replace train_data and val_data path in config file
sed -i 's#train2017.manifest#train2017_20_local.manifest#g' configs/detection/yolox_coco_pai.py
sed -i 's#val2017.manifest#val2017_20_local.manifest#g' configs/detection/yolox_coco_pai.py