EasyCV/easycv/datasets/detection/data_sources/raw.py

141 lines
4.4 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import functools
import logging
import os
from multiprocessing import cpu_count
import numpy as np
from easycv.datasets.registry import DATASOURCES
from easycv.file import io
from easycv.utils.bbox_util import batched_cxcywh2xyxy_with_shape
from .base import DetSourceBase
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
label_formats = ['.txt']
def parse_raw(source_iter, classes=None, delimeter=' '):
img_path, label_path = source_iter
source_info = {'filename': img_path}
with io.open(label_path, 'r') as f:
labels_and_boxes = np.array(
[line.split(delimeter) for line in f.read().splitlines()])
if not len(labels_and_boxes):
return source_info
labels = labels_and_boxes[:, 0]
bboxes = labels_and_boxes[:, 1:]
source_info.update({
'gt_bboxes': np.array(bboxes, dtype=np.float32),
'gt_labels': labels.astype(np.int64)
})
return source_info
@DATASOURCES.register_module
class DetSourceRaw(DetSourceBase):
"""
data dir is as follows:
```
|- data_dir
|-images
|-1.jpg
|-...
|-labels
|-1.txt
|-...
```
Label txt file is as follows:
The first column is the label id, and columns 2 to 5 are
coordinates relative to the image width and height [x_center, y_center, bbox_w, bbox_h].
```
15 0.519398 0.544087 0.476359 0.572061
2 0.501859 0.820726 0.996281 0.332178
...
```
Example:
data_source = DetSourceRaw(
img_root_path='/your/data_dir/images',
label_root_path='/your/data_dir/labels',
)
"""
def __init__(self,
img_root_path,
label_root_path,
classes=[],
cache_at_init=False,
cache_on_the_fly=False,
delimeter=' ',
parse_fn=parse_raw,
num_processes=int(cpu_count() / 2),
**kwargs):
"""
Args:
img_root_path: images dir path
label_root_path: labels dir path
classes(list, optional): classes list
cache_at_init: if set True, will cache in memory in __init__ for faster training
cache_on_the_fly: if set True, will cache in memroy during training
delimeter: delimeter of txt file
parse_fn: parse function to parse item of source iterator
num_processes: number of processes to parse samples
"""
self.delimeter = delimeter
self.img_root_path = img_root_path
self.label_root_path = label_root_path
parse_fn = functools.partial(parse_fn, delimeter=delimeter)
super(DetSourceRaw, self).__init__(
classes=classes,
cache_at_init=cache_at_init,
cache_on_the_fly=cache_on_the_fly,
parse_fn=parse_fn,
num_processes=num_processes)
def get_source_iterator(self):
self.img_files = [
os.path.join(self.img_root_path, i)
for i in io.listdir(self.img_root_path, recursive=True)
if os.path.splitext(i)[-1].lower() in img_formats
]
self.label_files = []
for img_path in self.img_files:
img_name = os.path.splitext(os.path.basename(img_path))[0]
find_label_path = False
for label_format in label_formats:
lable_path = os.path.join(self.label_root_path,
img_name + label_format)
if io.exists(lable_path):
find_label_path = True
self.label_files.append(lable_path)
break
if not find_label_path:
logging.warning(
'Not find label file %s for img: %s, skip the sample!' %
(lable_path, img_path))
self.img_files.remove(img_path)
assert len(self.img_files) == len(self.label_files)
assert len(
self.img_files) > 0, 'No samples found in %s' % self.img_root_path
return list(zip(self.img_files, self.label_files))
def post_process_fn(self, result_dict):
result_dict = super(DetSourceRaw, self).post_process_fn(result_dict)
result_dict['gt_bboxes'] = batched_cxcywh2xyxy_with_shape(
result_dict['gt_bboxes'], shape=result_dict['img_shape'][:2])
return result_dict