EasyCV/configs/detection/yolox/yolox_tiny_8xb16_300e_coco.py

127 lines
4.0 KiB
Python

_base_ = './yolox_s_8xb16_300e_coco.py'
# model settings
model = dict(model_type='tiny')
CLASSES = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'
]
img_scale = (416, 416)
random_size = (10, 20)
scale_ratio = (0.5, 1.5)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='MMMosaic', img_scale=img_scale, pad_val=114.0),
dict(
type='MMRandomAffine',
scaling_ratio_range=scale_ratio,
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(
type='MMMixUp', # s m x l; tiny nano will detele
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(
type='MMPhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(type='MMRandomFlip', flip_ratio=0.5),
dict(type='MMResize', keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='MMResize', img_scale=img_scale, keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(type='MMNormalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
]
data_root = 'data/coco/'
train_dataset = dict(
type='DetImagesMixDataset',
data_source=dict(
type='DetSourceCoco',
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=[
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True)
],
classes=CLASSES,
filter_empty_gt=False,
iscrowd=False),
pipeline=train_pipeline,
dynamic_scale=img_scale)
val_dataset = dict(
type='DetImagesMixDataset',
imgs_per_gpu=2,
data_source=dict(
type='DetSourceCoco',
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=[
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True)
],
classes=CLASSES,
filter_empty_gt=False,
iscrowd=True),
pipeline=test_pipeline,
dynamic_scale=None,
label_padding=False)
data = dict(
imgs_per_gpu=16, workers_per_gpu=4, train=train_dataset, val=val_dataset)
# additional hooks
interval = 10
custom_hooks = [
dict(
type='YOLOXModeSwitchHook',
no_aug_epochs=15,
skip_type_keys=('MMMosaic', 'MMRandomAffine', 'MMMixUp'),
priority=48),
dict(
type='SyncRandomSizeHook',
ratio_range=random_size,
img_scale=img_scale,
interval=interval,
priority=48),
dict(
type='SyncNormHook',
num_last_epochs=15,
interval=interval,
priority=48)
]
eval_pipelines = [
dict(
mode='test',
data=data['val'],
evaluators=[dict(type='CocoDetectionEvaluator', classes=CLASSES)],
)
]