EasyCV/easycv/predictors/face_keypoints_predictor.py

127 lines
4.8 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import cv2
from easycv.predictors.builder import PREDICTORS
from .base import PredictorV2
face_contour_point_index = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32
]
left_eye_brow_point_index = [33, 34, 35, 36, 37, 38, 39, 40, 41, 33]
right_eye_brow_point_index = [42, 43, 44, 45, 46, 47, 48, 49, 50, 42]
left_eye_point_index = [66, 67, 68, 69, 70, 71, 72, 73, 66]
right_eye_point_index = [75, 76, 77, 78, 79, 80, 81, 82, 75]
nose_bridge_point_index = [51, 52, 53, 54]
nose_contour_point_index = [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]
mouth_outer_point_index = [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 84]
mouth_inter_point_index = [96, 97, 98, 99, 100, 101, 102, 103, 96]
@PREDICTORS.register_module()
class FaceKeypointsPredictor(PredictorV2):
"""Predict pipeline for face keypoint
Args:
model_path (str): Path of model path
config_file (str): config file path for model and processor to init. Defaults to None.
batch_size (int): batch size for forward.
device (str): Support 'cuda' or 'cpu', if is None, detect device automatically.
save_results (bool): Whether to save predict results.
save_path (str): File path for saving results, only valid when `save_results` is True.
pipelines (list[dict]): Data pipeline configs.
"""
def __init__(self,
model_path,
config_file,
batch_size=1,
device=None,
save_results=False,
save_path=None,
pipelines=None):
super(FaceKeypointsPredictor, self).__init__(
model_path,
config_file,
batch_size=batch_size,
device=device,
save_results=save_results,
save_path=save_path,
pipelines=pipelines)
self.input_size = self.cfg.IMAGE_SIZE
self.point_number = self.cfg.POINT_NUMBER
def preprocess(self, inputs, *args, **kwargs):
batch_outputs = super().preprocess(inputs, *args, **kwargs)
self.img_metas = batch_outputs['img_metas']
return batch_outputs
def postprocess(self, inputs, *args, **kwargs):
results = []
points = inputs['point'].cpu().numpy()
poses = inputs['pose'].cpu().numpy()
for idx, point in enumerate(points):
h, w, c = self.img_metas[idx]['img_shape']
scale_h = h / self.input_size
scale_w = w / self.input_size
point = point.reshape((self.point_number, 2))
for index in range(len(point)):
point[index][0] *= scale_w
point[index][1] *= scale_h
results.append({'point': point, 'pose': poses[idx]})
return results
def show_result(self, img, points, scale=4.0, save_path=None):
"""Draw `result` over `img`.
Args:
img ( ndarray ): The image to be displayed.
result (list): The face keypoints to draw over `img`.
scale: zoom in or out scale
save_path: path to save drawned 'img'
Returns:
img (ndarray): Only if not `show` or `out_file`
"""
image = cv2.resize(img, dsize=None, fx=scale, fy=scale)
def draw_line(point_index, image, point):
for i in range(len(point_index) - 1):
cur_index = point_index[i]
next_index = point_index[i + 1]
cur_pt = (int(point[cur_index][0] * scale),
int(point[cur_index][1] * scale))
next_pt = (int(point[next_index][0] * scale),
int(point[next_index][1] * scale))
cv2.line(image, cur_pt, next_pt, (0, 0, 255), thickness=2)
draw_line(face_contour_point_index, image, points)
draw_line(left_eye_brow_point_index, image, points)
draw_line(right_eye_brow_point_index, image, points)
draw_line(left_eye_point_index, image, points)
draw_line(right_eye_point_index, image, points)
draw_line(nose_bridge_point_index, image, points)
draw_line(nose_contour_point_index, image, points)
draw_line(mouth_outer_point_index, image, points)
draw_line(mouth_inter_point_index, image, points)
size = len(points)
for i in range(size):
x = int(points[i][0])
y = int(points[i][1])
cv2.putText(image, str(i), (int(x * scale), int(y * scale)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
cv2.circle(image, (int(x * scale), int(y * scale)), 2, (0, 255, 0),
cv2.FILLED)
if save_path is not None:
cv2.imwrite(save_path, image)
return image