EasyCV/tests/test_hooks/test_dino_hook.py

87 lines
2.5 KiB
Python

#! -*- coding: utf8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import time
import unittest
import uuid
import torch
from mmcv.parallel import MMDataParallel
from tests.ut_config import TMP_DIR_LOCAL
from easycv.datasets import build_dataloader
from easycv.file import io
from easycv.hooks.dino_hook import DINOHook
from easycv.runner import EVRunner
from easycv.utils.logger import get_root_logger
class DummyDataset(object):
def __getitem__(self, idx):
output = {'img': [torch.randn(3, 224, 224), torch.randn(3, 224, 224)]}
return output
def __len__(self):
return 4
def _build_model():
from easycv.models import build_model
model = dict(
type='DINO',
pretrained=None,
train_preprocess=[
'randomGrayScale', 'gaussianBlur', 'solarize'
], # 2+6 view, has different augment pipeline, dino is complex
backbone=dict(
type='PytorchImageModelWrapper',
# deit(224)
model_name='dynamic_deit_small_p16',
),
# swav need mulit crop ,doesn't support vit based model
neck=dict(type='DINONeck', in_dim=384, out_dim=65536),
config=dict(
use_bn_in_head=False,
norm_last_layer=True,
))
return build_model(model)
class DINOHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
def test_byol_hook(self):
work_dir = os.path.join(TMP_DIR_LOCAL, uuid.uuid4().hex)
io.makedirs(work_dir)
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = os.path.join(work_dir, '{}.log'.format(timestamp))
logger = get_root_logger(log_file=log_file)
model = _build_model()
model = MMDataParallel(model, device_ids=[0]).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
runner = EVRunner(
model=model, work_dir=work_dir, optimizer=optimizer, logger=logger)
dino_hook = DINOHook()
runner.register_hook(dino_hook)
dataset = DummyDataset()
dataloader = build_dataloader(
dataset, imgs_per_gpu=2, workers_per_gpu=1)
runner.data_loader = [dataloader]
runner.run([dataloader], [('train', 1)], 1)
self.assertEqual(runner.optimizer.param_groups[0]['weight_decay'],
0.22)
shutil.rmtree(work_dir, ignore_errors=True)
if __name__ == '__main__':
unittest.main()