EasyCV/tests/test_predictors/test_reid_predictor.py

139 lines
4.8 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
"""
isort:skip_file
"""
import json
import os
import unittest
import numpy as np
import time
import cv2
import torch
import scipy.io
from easycv.predictors.reid_predictor import ReIDPredictor
from tests.ut_config import SMALL_MARKET1501
from numpy.testing import assert_array_almost_equal
class ReIDPredictorTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
def evaluate(self, qf, ql, qc, gf, gl, gc):
query = qf.view(-1, 1)
score = torch.mm(gf, query)
score = score.squeeze(1).cpu()
score = score.numpy()
# predict index
index = np.argsort(score) # from small to large
index = index[::-1]
# good index
query_index = np.argwhere(gl == ql)
camera_index = np.argwhere(gc == qc)
good_index = np.setdiff1d(
query_index, camera_index, assume_unique=True)
junk_index1 = np.argwhere(gl == -1)
junk_index2 = np.intersect1d(query_index, camera_index)
junk_index = np.append(junk_index2, junk_index1)
CMC_tmp = self.compute_mAP(index, good_index, junk_index)
return CMC_tmp
def compute_mAP(self, index, good_index, junk_index):
ap = 0
cmc = torch.IntTensor(len(index)).zero_()
if good_index.size == 0: # if empty
cmc[0] = -1
return ap, cmc
# remove junk_index
mask = np.in1d(index, junk_index, invert=True)
index = index[mask]
# find good_index index
ngood = len(good_index)
mask = np.in1d(index, good_index)
rows_good = np.argwhere(mask == True)
rows_good = rows_good.flatten()
cmc[rows_good[0]:] = 1
for i in range(ngood):
d_recall = 1.0 / ngood
precision = (i + 1) * 1.0 / (rows_good[i] + 1)
if rows_good[i] != 0:
old_precision = i * 1.0 / rows_good[i]
else:
old_precision = 1.0
ap = ap + d_recall * (old_precision + precision) / 2
return ap, cmc
def test(self):
test_dir = os.path.join(SMALL_MARKET1501, 'pytorch')
checkpoint = 'https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/tracking/reid_r50_epoch_60_export.pt'
gallery_dir = os.path.join(test_dir, 'gallery')
query_dir = os.path.join(test_dir, 'query')
# build model
model = ReIDPredictor(
model_path=checkpoint, config_file=None, batch_size=256)
# extract features
since = time.time()
gallery_results = model(gallery_dir)
query_results = model(query_dir)
gallery_feature, gallery_cam, gallery_label = gallery_results[
'img_feature'], gallery_results['img_cam'], gallery_results[
'img_label']
query_feature, query_cam, query_label = query_results[
'img_feature'], query_results['img_cam'], query_results[
'img_label']
print(gallery_feature.size(), query_feature.size())
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.2f}s'.format(
time_elapsed // 60, time_elapsed % 60))
inference_result = './pytorch_result.mat'
result = {
'gallery_f': gallery_feature.numpy(),
'gallery_label': gallery_label,
'gallery_cam': gallery_cam,
'query_f': query_feature.numpy(),
'query_label': query_label,
'query_cam': query_cam
}
scipy.io.savemat(inference_result, result)
result = scipy.io.loadmat(inference_result)
query_feature = torch.FloatTensor(result['query_f'])
query_cam = result['query_cam'][0]
query_label = result['query_label'][0]
gallery_feature = torch.FloatTensor(result['gallery_f'])
gallery_cam = result['gallery_cam'][0]
gallery_label = result['gallery_label'][0]
query_feature = query_feature.cuda()
gallery_feature = gallery_feature.cuda()
CMC = torch.IntTensor(len(gallery_label)).zero_()
ap = 0.0
for i in range(len(query_label)):
ap_tmp, CMC_tmp = self.evaluate(query_feature[i], query_label[i],
query_cam[i], gallery_feature,
gallery_label, gallery_cam)
if CMC_tmp[0] == -1:
continue
CMC = CMC + CMC_tmp
ap += ap_tmp
CMC = CMC.float()
CMC = CMC / len(query_label) # average CMC
mAP = ap / len(query_label)
assert_array_almost_equal(
CMC[:10].tolist(),
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
decimal=1)
assert_array_almost_equal(mAP, 0.9925018971878582)