EasyCV/tests/hooks/test_export_hook.py
tuofeilun 23f2b0e399
Adapt designer (#235)
1. Use original config as startup script. (For details, see refactor config parsing method #225)
2. Refactor the splicing rules of the check_base_cfg_path function in the EasyCV/easycv/utils/config_tools.py
3. Support three ways to pass class_list parameter.
4. Fix the bug that clsevalutor may make mistakes when evaluating top5.
5. Fix the bug that the distributed export cannot export the model.
6. Fix the bug that the load pretrained model key does not match.
7. support cls data source itag.
2022-12-01 17:47:10 +08:00

85 lines
2.4 KiB
Python

#! -*- coding: utf8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import time
import unittest
import uuid
import torch
from mmcv import Config
from torch import nn
from torch.utils.data import DataLoader
from easycv.file import io
from easycv.hooks.export_hook import ExportHook
from easycv.models.registry import MODELS
from easycv.runner import EVRunner
from easycv.utils.logger import get_root_logger
from easycv.utils.test_util import get_tmp_dir
class ExportHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
def test_export_hook(self):
model = _build_model()
optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
log_config = dict(
interval=1,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook'),
])
checkpoint_config = dict(interval=1)
work_dir = get_tmp_dir()
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = os.path.join(work_dir, '{}.log'.format(timestamp))
logger = get_root_logger(log_file=log_file)
runner = EVRunner(
model=model, work_dir=work_dir, optimizer=optimizer, logger=logger)
runner.register_logger_hooks(log_config)
runner.register_checkpoint_hook(checkpoint_config)
cfg = Config(cfg_dict=dict(model=dict(type='TestExportModel')))
cfg.work_dir = work_dir
hook = ExportHook(cfg)
loader = DataLoader(torch.ones((3, 2)))
runner.register_hook(hook)
runner.run([loader], [('train', 1)], 2)
files_list = io.listdir(work_dir)
self.assertIn('epoch_2_export.pt', files_list)
self.assertIn('epoch_1.pth', files_list)
self.assertIn('epoch_2.pth', files_list)
io.rmtree(work_dir)
def _build_model():
@MODELS.register_module()
class TestExportModel(nn.Module):
def __init__(self, pretrained=False):
super().__init__()
self.linear = nn.Linear(2, 1)
def forward(self, x):
return self.linear(x)
def train_step(self, x, optimizer, **kwargs):
return dict(loss=self(x).squeeze())
def val_step(self, x, optimizer, **kwargs):
return dict(loss=self(x).squeeze())
return TestExportModel()
if __name__ == '__main__':
unittest.main()