EasyCV/tests/models/selfsup/test_simclr.py
2022-04-02 20:01:06 +08:00

61 lines
1.7 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
import torch
from torch import distributed as dist
from easycv.models.builder import build_model
from easycv.utils.test_util import pseudo_dist_init
_base_model_cfg = dict(
type='SimCLR',
pretrained=None,
backbone=dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='SyncBN')),
neck=dict(
type='NonLinearNeckSimCLR', # SimCLR non-linear neck
in_channels=2048,
hid_channels=2048,
out_channels=128,
num_layers=2,
with_avg_pool=True),
head=dict(type='ContrastiveHead', temperature=0.1))
class SimCLRTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
def test_simclr_train(self):
model = build_model(_base_model_cfg).cuda()
pseudo_dist_init()
model.train()
batch_size = 4
imgs = [torch.randn(batch_size, 3, 224, 224).cuda()] * 2
output = model(imgs, mode='train')
self.assertIn('loss', output)
self.assertEqual(output['loss'].shape, torch.Size([]))
dist.destroy_process_group()
def test_simclr_extract(self):
model = build_model(_base_model_cfg).cuda()
pseudo_dist_init()
batch_size = 4
imgs = torch.randn(batch_size, 3, 224, 224).cuda()
output = model(imgs, mode='extract')
self.assertEqual(len(output), 1)
self.assertEqual(output[0].shape, torch.Size([4, 2048, 7, 7]))
dist.destroy_process_group()
if __name__ == '__main__':
unittest.main()