mirror of https://github.com/alibaba/EasyCV.git
14 KiB
14 KiB
Self-supervised Learning Model Zoo
Pretrained models
MAE
Pretrained on ImageNet dataset.
Config | Epochs | Download |
---|---|---|
mae_vit_base_patch16_8xb64_400e | 400 | model |
mae_vit_base_patch16_8xb64_1600e | 1600 | model |
mae_vit_large_patch16_8xb32_1600e | 1600 | model |
Fast ConvMAE
Pretrained on ImageNet dataset.
Config | Epochs | Download |
---|---|---|
fast_convmae_vit_base_patch16_8xb64_50e | 50 | model - log |
DINO
Pretrained on ImageNet dataset.
Config | Epochs | Download |
---|---|---|
dino_deit_small_p16_8xb32_100e | 100 | model - log |
MoBY
Pretrained on ImageNet dataset.
Config | Epochs | Download |
---|---|---|
moby_deit_small_p16_4xb128_300e | 300 | model - log |
moby_swin_tiny_8xb64_300e | 300 | model - log |
MoCo V2
Pretrained on ImageNet dataset.
Config | Epochs | Download |
---|---|---|
mocov2_resnet50_8xb32_200e | 200 | model - log |
SwAV
Pretrained on ImageNet dataset.
Config | Epochs | Download |
---|---|---|
swav_resnet50_8xb32_200e | 200 | model - log |
Benchmarks
For detailed usage of benchmark tools, please refer to benchmark README.md.
ImageNet Linear Evaluation
Algorithm | Linear Eval Config | Pretrained Config | Top-1 (%) | Download |
---|---|---|---|---|
SwAV | swav_resnet50_8xb2048_20e_feature | swav_resnet50_8xb32_200e | 73.618 | log |
DINO | dino_deit_small_p16_8xb2048_20e_feature | dino_deit_small_p16_8xb32_100e | 71.248 | log |
MoBY | moby_deit_small_p16_8xb2048_30e_feature | moby_deit_small_p16_4xb128_300e | 72.214 | log |
MoCo-v2 | mocov2_resnet50_8xb2048_40e_feature | mocov2_resnet50_8xb32_200e | 66.8 | log |
ImageNet Finetuning
Algorithm | Fintune Config | Pretrained Config | Top-1 (%) | Download |
---|---|---|---|---|
MAE | mae_vit_base_patch16_8xb64_100e_lrdecay075_fintune | mae_vit_base_patch16_8xb64_400e | 83.13 | fintune model - log |
mae_vit_base_patch16_8xb64_100e_lrdecay065_fintune | mae_vit_base_patch16_8xb64_1600e | 83.55 | fintune model - log | |
mae_vit_large_patch16_8xb16_50e_lrdecay075_fintune | mae_vit_large_patch16_8xb32_1600e | 85.70 | fintune model - log | |
Fast ConvMAE | fast_convmae_vit_base_patch16_8xb64_100e_fintune | fast_convmae_vit_base_patch16_8xb64_50e | 84.37 | fintune model - log |
COCO2017 Object Detection
Algorithm | Eval Config | Pretrained Config | mAP (Box) | mAP (Mask) | Download |
---|---|---|---|---|---|
SwAV | mask_rcnn_r50_fpn_1x_coco | swav_resnet50_8xb32_200e | 40.38 | 36.48 | eval model - log |
MoCo-v2 | mask_rcnn_r50_fpn_1x_coco | mocov2_resnet50_8xb32_200e | 39.9 | 35.8 | eval model - log |
MoBY | mask_rcnn_swin_tiny_1x_coco | moby_swin_tiny_8xb64_300e | 43.11 | 39.37 | eval model - log |
VOC2012 Aug Semantic Segmentation
Algorithm | Eval Config | Pretrained Config | mIOU | Download |
---|---|---|---|---|
SwAV | fcn_r50-d8_512x512_60e_voc12aug | swav_resnet50_8xb32_200e | 63.91 | eval model - log |
MoCo-v2 | fcn_r50-d8_512x512_60e_voc12aug | mocov2_resnet50_8xb32_200e | 68.49 | eval model - log |