mirror of https://github.com/alibaba/EasyCV.git
315 lines
11 KiB
Python
315 lines
11 KiB
Python
# Copyright 2019 Alibaba Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Linear module tests."""
|
|
|
|
import math
|
|
import os
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from easycv.core import sailfish
|
|
|
|
|
|
class MockLinear(torch.nn.Module):
|
|
r"""Applies a linear transformation to the incoming data.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features,
|
|
out_features,
|
|
bias=True,
|
|
weight_initializer=None,
|
|
bias_initializer=None,
|
|
parallel=None):
|
|
super(MockLinear, self).__init__()
|
|
self.out_features = out_features
|
|
self.in_features = in_features
|
|
self.weight = torch.nn.Parameter(
|
|
torch.Tensor(self.out_features, self.in_features))
|
|
if bias:
|
|
self.bias = torch.nn.Parameter(torch.Tensor(self.out_features))
|
|
else:
|
|
self.register_parameter('bias', None)
|
|
self.weight_initializer = weight_initializer
|
|
if weight_initializer is None:
|
|
self.weight_initializer = sailfish.KaimingUniformInitializer(
|
|
math.sqrt(5))
|
|
self.bias_initializer = bias_initializer
|
|
if bias_initializer is None:
|
|
self.bias_initializer = sailfish.BiasUniformInitializer(
|
|
self.in_features)
|
|
self.reset_parameters()
|
|
self.parallel = parallel
|
|
|
|
def reset_parameters(self):
|
|
r"""Reset parameters."""
|
|
self.weight_initializer(self.weight)
|
|
if self.bias is not None:
|
|
self.bias_initializer(self.bias)
|
|
|
|
def forward(self, features): # pylint: disable=arguments-differ
|
|
features = features.type(dtype=self.weight.dtype)
|
|
return torch.nn.functional.linear(features, self.weight, self.bias)
|
|
|
|
|
|
def _run_baseline_train_main(gpus_per_worker, num_steps, batch_size,
|
|
in_features, out_features, bias, lr):
|
|
r"""Run baseline on 1 GPU."""
|
|
torch.manual_seed(42)
|
|
random.seed(42)
|
|
fc = MockLinear(
|
|
in_features,
|
|
out_features,
|
|
bias=bias,
|
|
weight_initializer=sailfish.ZerosInitializer(),
|
|
bias_initializer=sailfish.OnesInitializer()).cuda()
|
|
criterion = torch.nn.CrossEntropyLoss().cuda()
|
|
optimizer = torch.optim.SGD(fc.parameters(), lr=lr)
|
|
fc.train()
|
|
criterion.train()
|
|
|
|
results = []
|
|
for step in range(num_steps):
|
|
result = {}
|
|
features_list = []
|
|
label_list = []
|
|
for gpu in range(gpus_per_worker):
|
|
torch.manual_seed(42 * step + gpu)
|
|
random.seed(42 * step + gpu)
|
|
features_list.append(torch.randn([batch_size, in_features]).cuda())
|
|
label_list.append(
|
|
torch.as_tensor([
|
|
random.randint(0, out_features - 1)
|
|
for _ in range(batch_size)
|
|
]).cuda())
|
|
features = torch.cat(features_list)
|
|
label = torch.cat(label_list)
|
|
|
|
torch.manual_seed(42 * step)
|
|
random.seed(42 * step)
|
|
logits = fc(features)
|
|
loss = criterion(logits, label)
|
|
result['loss'] = loss.item()
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
result['grads/norm'] = [
|
|
torch.norm(p.grad).item() for p in fc.parameters()
|
|
]
|
|
results.append(result)
|
|
return results
|
|
|
|
|
|
def _run_mp_train_main(gpu, gpus_per_worker, baseline_steps, num_steps,
|
|
batch_size, in_features, out_features, bias, lr):
|
|
r"""Run MP and validate results."""
|
|
torch.cuda.set_device(gpu)
|
|
torch.distributed.init_process_group(
|
|
'nccl', rank=gpu, world_size=gpus_per_worker)
|
|
|
|
torch.manual_seed(42)
|
|
random.seed(42)
|
|
model_parallel = sailfish.ModelParallel(gpu, gpus_per_worker)
|
|
fc = sailfish.Linear(
|
|
in_features,
|
|
out_features,
|
|
bias=bias,
|
|
weight_initializer=sailfish.ZerosInitializer(),
|
|
bias_initializer=sailfish.OnesInitializer(),
|
|
parallel=model_parallel).cuda()
|
|
criterion = sailfish.CrossEntropyLoss(parallel=model_parallel).cuda()
|
|
optimizer = torch.optim.SGD(fc.parameters(), lr=lr)
|
|
fc.train()
|
|
criterion.train()
|
|
|
|
for step in range(num_steps):
|
|
torch.manual_seed(42 * step + gpu)
|
|
random.seed(42 * step + gpu)
|
|
features = torch.randn([batch_size, in_features]).cuda()
|
|
features = model_parallel.gather(features)
|
|
label = torch.as_tensor([
|
|
random.randint(0, out_features - 1) for _ in range(batch_size)
|
|
]).cuda()
|
|
label = model_parallel.gather_target(label)
|
|
|
|
torch.manual_seed(42 * step)
|
|
random.seed(42 * step)
|
|
logits = fc(features)
|
|
loss = criterion(logits, label)
|
|
np.testing.assert_allclose(
|
|
loss.item(),
|
|
baseline_steps[step]['loss'],
|
|
rtol=1e-5,
|
|
err_msg='Wrong loss at gpu {} step {}'.format(gpu, step))
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
grad_norms = [
|
|
torch.norm(model_parallel.gather(p.grad)).item()
|
|
for p in fc.parameters()
|
|
]
|
|
np.testing.assert_allclose(
|
|
grad_norms,
|
|
baseline_steps[step]['grads/norm'],
|
|
rtol=1e-5,
|
|
err_msg='Wrong grads norm at gpu {} step {}'.format(gpu, step))
|
|
|
|
|
|
class TestLinear(unittest.TestCase):
|
|
r"""Test sailfish.Linear."""
|
|
|
|
def _run_baseline_train(self, batch_size, in_features, out_features, bias,
|
|
lr):
|
|
r"""Run baseline without parallel."""
|
|
result = {}
|
|
features = torch.randn([batch_size, in_features])
|
|
fc = torch.nn.Linear(in_features, out_features, bias=bias)
|
|
optimizer = torch.optim.SGD(fc.parameters(), lr=lr)
|
|
fc.train()
|
|
logits = fc(features)
|
|
loss = torch.sum(logits)
|
|
result['loss'] = loss.item()
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
result['grads/norm'] = [
|
|
torch.norm(p.grad).item() for p in fc.parameters()
|
|
]
|
|
return result
|
|
|
|
def _run_mp_no_parallel_train(self, batch_size, in_features, out_features,
|
|
bias, lr):
|
|
r"""Run MP without parallel."""
|
|
result = {}
|
|
features = torch.randn([batch_size, in_features])
|
|
fc = sailfish.Linear(in_features, out_features, bias=bias)
|
|
optimizer = torch.optim.SGD(fc.parameters(), lr=lr)
|
|
fc.train()
|
|
logits = fc(features)
|
|
loss = torch.sum(logits)
|
|
result['loss'] = loss.item()
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
result['grads/norm'] = [
|
|
torch.norm(p.grad).item() for p in fc.parameters()
|
|
]
|
|
return result
|
|
|
|
def _run_mp_1gpu_train(self, batch_size, in_features, out_features, bias,
|
|
lr):
|
|
r"""Run MP on 1 GPU."""
|
|
result = {}
|
|
features = torch.randn([batch_size, in_features])
|
|
model_parallel = sailfish.ModelParallel(0, 1)
|
|
fc = sailfish.Linear(
|
|
in_features, out_features, bias=bias, parallel=model_parallel)
|
|
optimizer = torch.optim.SGD(fc.parameters(), lr=lr)
|
|
fc.train()
|
|
logits = fc(features)
|
|
loss = torch.sum(logits)
|
|
result['loss'] = loss.item()
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
result['grads/norm'] = [
|
|
torch.norm(p.grad).item() for p in fc.parameters()
|
|
]
|
|
return result
|
|
|
|
def test_no_parallel(self):
|
|
r"""Test sailfish.Linear without parallel."""
|
|
batch_size = 3
|
|
in_features = 4
|
|
out_features = 5
|
|
bias = False
|
|
lr = 0.1
|
|
|
|
for step in range(5):
|
|
torch.manual_seed(42 + step)
|
|
random.seed(42 + step)
|
|
baseline = self._run_baseline_train(batch_size, in_features,
|
|
out_features, bias, lr)
|
|
|
|
torch.manual_seed(42 + step)
|
|
random.seed(42 + step)
|
|
rc = self._run_mp_no_parallel_train(batch_size, in_features,
|
|
out_features, bias, lr)
|
|
|
|
np.testing.assert_allclose(
|
|
rc['loss'], baseline['loss'], err_msg='loss not equal')
|
|
np.testing.assert_allclose(
|
|
rc['grads/norm'],
|
|
baseline['grads/norm'],
|
|
err_msg='norm of grads not equal')
|
|
|
|
def test_mp(self):
|
|
r"""Test sailfish.Linear with model parallel on 1 GPU."""
|
|
batch_size = 2
|
|
in_features = 7
|
|
out_features = 4
|
|
bias = True
|
|
lr = 0.6
|
|
|
|
for step in range(5):
|
|
torch.manual_seed(100 + step)
|
|
random.seed(100 + step)
|
|
baseline = self._run_baseline_train(batch_size, in_features,
|
|
out_features, bias, lr)
|
|
|
|
torch.manual_seed(100 + step)
|
|
random.seed(100 + step)
|
|
rc = self._run_mp_1gpu_train(batch_size, in_features, out_features,
|
|
bias, lr)
|
|
|
|
np.testing.assert_allclose(
|
|
rc['loss'], baseline['loss'], err_msg='loss not equal')
|
|
np.testing.assert_allclose(
|
|
rc['grads/norm'],
|
|
baseline['grads/norm'],
|
|
err_msg='norm of grads not equal')
|
|
|
|
def test_mp_vs_1gpu(self):
|
|
r"""Test sailfish.ArcFaceLinear with model parallel."""
|
|
gpus_per_worker = torch.cuda.device_count()
|
|
num_steps = 5
|
|
batch_size = 2
|
|
in_features = 3
|
|
out_features = gpus_per_worker
|
|
bias = True
|
|
lr = 0.6
|
|
|
|
baseline_steps = _run_baseline_train_main(gpus_per_worker, num_steps,
|
|
batch_size, in_features,
|
|
out_features, bias, lr)
|
|
|
|
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
|
os.environ['MASTER_PORT'] = '24601'
|
|
os.environ['WORLD_SIZE'] = '1'
|
|
os.environ['RANK'] = '0'
|
|
torch.multiprocessing.spawn(
|
|
_run_mp_train_main,
|
|
args=(gpus_per_worker, baseline_steps, num_steps, batch_size,
|
|
in_features, out_features, bias, lr),
|
|
nprocs=gpus_per_worker,
|
|
join=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|