EasyCV/thirdparty/mtcnn/detector.py

275 lines
8.9 KiB
Python

import torch
import math
import cv2
import numpy as np
from PIL import Image, ImageDraw
from torch.autograd import Variable
from .get_nets import PNet, RNet, ONet
from .utils import (
try_gpu,
nms,
calibrate_box,
convert_to_square,
correct_bboxes,
get_image_boxes,
generate_bboxes,
preprocess,
)
class FaceDetector:
def __init__(self, device=None, dir_path=None):
if device is None:
device=try_gpu()
self.device = device
if dir_path is not None:
self.pnet = PNet(dir_path).to(device)
self.rnet = RNet(dir_path).to(device)
self.onet = ONet(dir_path).to(device)
self.onet.eval()
else:
# LOAD MODELS
self.pnet = PNet().to(device)
self.rnet = RNet().to(device)
self.onet = ONet().to(device)
self.onet.eval()
def detect(
self,
image,
min_face_size=20.0,
thresholds=[0.6, 0.7, 0.8],
nms_thresholds=[0.7, 0.7, 0.7],
):
"""
Arguments:
image: an instance of PIL.Image.
min_face_size: a float number.
thresholds: a list of length 3.
nms_thresholds: a list of length 3.
Returns:
two float numpy arrays of shapes [n_boxes, 5] and [n_boxes, 10],
bounding boxes and facial landmarks.
"""
# this detector only support RGB Image input !!!!!!!!! # todo: fix eas
if type(image) == np.ndarray:
image = Image.fromarray(image)
#image = Image.fromarray(cv2.cvtColor(image,cv2.COLOR_BGR2RGB))
# detector need Image Input
# BUILD AN IMAGE PYRAMID
width, height = image.size
min_length = min(height, width)
min_detection_size = 12
factor = 0.707 # sqrt(0.5)
# scales for scaling the image
scales = []
# scales the image so that
# minimum size that we can detect equals to
# minimum face size that we want to detect
m = min_detection_size / min_face_size
min_length *= m
factor_count = 0
while min_length > min_detection_size:
scales.append(m * factor ** factor_count)
min_length *= factor
factor_count += 1
# STAGE 1
# it will be returned
bounding_boxes = []
# run P-Net on different scales
for s in scales:
boxes = self.__run_first_stage(image, scale=s, threshold=thresholds[0])
bounding_boxes.append(boxes)
# collect boxes (and offsets, and scores) from different scales
bounding_boxes = [i for i in bounding_boxes if i is not None]
bounding_boxes = np.vstack(bounding_boxes)
keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
bounding_boxes = bounding_boxes[keep]
# use offsets predicted by pnet to transform bounding boxes
bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
# shape [n_boxes, 5]
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
# STAGE 2
img_boxes = get_image_boxes(bounding_boxes, image, size=24)
with torch.no_grad():
img_boxes = Variable(torch.FloatTensor(img_boxes).to(self.device))
output = self.rnet(img_boxes)
offsets = output[0].cpu().data.numpy() # shape [n_boxes, 4]
probs = output[1].cpu().data.numpy() # shape [n_boxes, 2]
keep = np.where(probs[:, 1] > thresholds[1])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
offsets = offsets[keep]
keep = nms(bounding_boxes, nms_thresholds[1])
bounding_boxes = bounding_boxes[keep]
bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
# STAGE 3
img_boxes = get_image_boxes(bounding_boxes, image, size=48)
if len(img_boxes) == 0:
return [], []
with torch.no_grad():
img_boxes = Variable(torch.FloatTensor(img_boxes).to(self.device))
output = self.onet(img_boxes)
landmarks = output[0].cpu().data.numpy() # shape [n_boxes, 10]
offsets = output[1].cpu().data.numpy() # shape [n_boxes, 4]
probs = output[2].cpu().data.numpy() # shape [n_boxes, 2]
keep = np.where(probs[:, 1] > thresholds[2])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
offsets = offsets[keep]
landmarks = landmarks[keep]
# compute landmark points
width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
landmarks[:, 0:5] = (
np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
)
landmarks[:, 5:10] = (
np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]
)
bounding_boxes = calibrate_box(bounding_boxes, offsets)
keep = nms(bounding_boxes, nms_thresholds[2], mode="min")
bounding_boxes = bounding_boxes[keep]
landmarks = landmarks[keep]
# reshape [x1,x2,..x5,y1,..y5] to [[x1,y1],...[x5,y5]]
landmarks = [np.array(ld).reshape((5,2), order="F") for ld in landmarks]
return bounding_boxes, landmarks
def safe_detect(self, image,
min_face_size=20.0,
thresholds=[0.6, 0.7, 0.8],
nms_thresholds=[0.7, 0.7, 0.7],
score_thresholds=0.90):
try:
bbox, ld = self.detect(image, min_face_size, thresholds, nms_thresholds)
_bbox = []
_ld = []
for idx,_ in enumerate(bbox):
if bbox[idx][-1] >= score_thresholds:
_bbox.append(bbox[idx])
_ld.append(ld[idx])
return _bbox, _ld
except:
return [], []
def draw_bboxes(self, image):
"""Draw bounding boxes and facial landmarks.
Arguments:
image: an instance of PIL.Image.
Returns:
an instance of PIL.Image.
"""
bounding_boxes, facial_landmarks = self.detect(image)
img_copy = image.copy()
draw = ImageDraw.Draw(img_copy)
for b in bounding_boxes:
draw.rectangle([(b[0], b[1]), (b[2], b[3])], outline="white")
for p in facial_landmarks:
for i in range(5):
draw.ellipse(
[(p[i] - 1.0, p[i + 5] - 1.0), (p[i] + 1.0, p[i + 5] + 1.0)],
outline="blue",
)
return img_copy
def crop_faces(self, image, size=112):
"""Crop all face images.
Arguments:
image: an instance of PIL.Image.
size: the side length of output images.
Returns:
a list of PIL.Image instances
"""
bounding_boxes, _ = self.detect(image)
img_list = []
# convert bboxes to square
square_bboxes = convert_to_square(bounding_boxes)
for b in square_bboxes:
face_img = image.crop((b[0], b[1], b[2], b[3]))
face_img = face_img.resize((size, size), Image.BILINEAR)
img_list.append(face_img)
return img_list
def __run_first_stage(self, image, scale, threshold):
"""Run P-Net, generate bounding boxes, and do NMS.
Arguments:
image: an instance of PIL.Image.
scale: a float number,
scale width and height of the image by this number.
threshold: a float number,
threshold on the probability of a face when generating
bounding boxes from predictions of the net.
Returns:
a float numpy array of shape [n_boxes, 9],
bounding boxes with scores and offsets (4 + 1 + 4).
"""
# scale the image and convert it to a float array
width, height = image.size
sw, sh = math.ceil(width * scale), math.ceil(height * scale)
img = image.resize((sw, sh), Image.BILINEAR)
img = np.asarray(img, "float32")
with torch.no_grad():
img = Variable(torch.FloatTensor(preprocess(img)).to(self.device))
output = self.pnet(img)
probs = output[1].cpu().data.numpy()[0, 1, :, :]
offsets = output[0].cpu().data.numpy()
# probs: probability of a face at each sliding window
# offsets: transformations to true bounding boxes
boxes = generate_bboxes(probs, offsets, scale, threshold)
if len(boxes) == 0:
return None
keep = nms(boxes[:, 0:5], overlap_threshold=0.5)
return boxes[keep]