EasyCV/easycv/datasets/detection3d/pipelines/loading.py

595 lines
23 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Alibaba, Inc. and its affiliates.
import concurrent.futures
import mmcv
import numpy as np
from easycv.core.points import BasePoints, get_points_type
from easycv.datasets.detection.pipelines import LoadAnnotations
from easycv.datasets.registry import PIPELINES
from easycv.file.image import load_image
@PIPELINES.register_module()
class LoadMultiViewImageFromFiles(object):
"""Load multi channel images from a list of separate channel files.
Expects results['img_filename'] to be a list of filenames.
Args:
to_float32 (bool, optional): Whether to convert the img to float32.
Defaults to False.
channel_order (str, optional): Channel order.
Defaults to 'bgr'.
backend (str): The image decoding backend type. Options are `cv2`, `pillow`, `turbojpeg`.
"""
def __init__(self,
to_float32=False,
channel_order='bgr',
backend='pillow'):
self.to_float32 = to_float32
self.channel_order = channel_order
self.backend = backend
@staticmethod
def _load_image(img_path, idx, mode, backend):
img = load_image(img_path, mode=mode, backend=backend)
return idx, img
def __call__(self, results):
"""Call function to load multi-view image from files.
Args:
results (dict): Result dict containing multi-view image filenames.
Returns:
dict: The result dict containing the multi-view image data.
Added keys and values are described below.
- filename (str): Multi-view image filenames.
- img (np.ndarray): Multi-view image arrays.
- img_shape (tuple[int]): Shape of multi-view image arrays.
- ori_shape (tuple[int]): Shape of original image arrays.
- pad_shape (tuple[int]): Shape of padded image arrays.
- scale_factor (float): Scale factor.
- img_norm_cfg (dict): Normalization configuration of images.
"""
filename = results['img_filename']
# img is of shape (h, w, c, num_views)
img_list = []
with concurrent.futures.ThreadPoolExecutor(
max_workers=len(filename)) as executor:
threads = []
for idx, name in enumerate(filename):
future = executor.submit(self._load_image, name, idx,
self.channel_order, self.backend)
threads.append(future)
for future in concurrent.futures.as_completed(threads):
img_list.append(future.result())
img_list = sorted(img_list, key=lambda item: item[0])
assert len(img_list) == len(filename)
img_list = [item[1] for item in img_list]
img = np.stack(img_list, axis=-1)
if self.to_float32:
img = img.astype(np.float32)
results['filename'] = filename
# unravel to list, see `DefaultFormatBundle` in formatting.py
# which will transpose each image separately and then stack into array
results['img'] = [img[..., i] for i in range(img.shape[-1])]
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
num_channels = 1 if len(img.shape) < 3 else img.shape[2]
results['img_norm_cfg'] = dict(
mean=np.zeros(num_channels, dtype=np.float32),
std=np.ones(num_channels, dtype=np.float32),
to_rgb=False)
return results
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__
repr_str += f'(to_float32={self.to_float32}, '
repr_str += f"color_type='{self.color_type}')"
return repr_str
@PIPELINES.register_module()
class LoadAnnotations3D(LoadAnnotations):
"""Load Annotations3D.
Load instance mask and semantic mask of points and
encapsulate the items into related fields.
Args:
with_bbox_3d (bool, optional): Whether to load 3D boxes.
Defaults to True.
with_label_3d (bool, optional): Whether to load 3D labels.
Defaults to True.
with_attr_label (bool, optional): Whether to load attribute label.
Defaults to False.
with_mask_3d (bool, optional): Whether to load 3D instance masks.
for points. Defaults to False.
with_seg_3d (bool, optional): Whether to load 3D semantic masks.
for points. Defaults to False.
with_bbox (bool, optional): Whether to load 2D boxes.
Defaults to False.
with_label (bool, optional): Whether to load 2D labels.
Defaults to False.
with_mask (bool, optional): Whether to load 2D instance masks.
Defaults to False.
with_seg (bool, optional): Whether to load 2D semantic masks.
Defaults to False.
with_bbox_depth (bool, optional): Whether to load 2.5D boxes.
Defaults to False.
poly2mask (bool, optional): Whether to convert polygon annotations
to bitmasks. Defaults to True.
seg_3d_dtype (dtype, optional): Dtype of 3D semantic masks.
Defaults to int64
file_client_args (dict): Config dict of file clients, refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details.
"""
def __init__(self,
with_bbox_3d=True,
with_label_3d=True,
with_attr_label=False,
with_mask_3d=False,
with_seg_3d=False,
with_bbox=False,
with_label=False,
with_mask=False,
with_seg=False,
with_bbox_depth=False,
poly2mask=True,
seg_3d_dtype=np.int64,
file_client_args=dict(backend='disk')):
super().__init__(
with_bbox,
with_label,
with_mask,
with_seg,
poly2mask,
file_client_args=file_client_args)
self.with_bbox_3d = with_bbox_3d
self.with_bbox_depth = with_bbox_depth
self.with_label_3d = with_label_3d
self.with_attr_label = with_attr_label
self.with_mask_3d = with_mask_3d
self.with_seg_3d = with_seg_3d
self.seg_3d_dtype = seg_3d_dtype
def _load_bboxes_3d(self, results):
"""Private function to load 3D bounding box annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded 3D bounding box annotations.
"""
results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
results['bbox3d_fields'].append('gt_bboxes_3d')
return results
def _load_bboxes_depth(self, results):
"""Private function to load 2.5D bounding box annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded 2.5D bounding box annotations.
"""
results['centers2d'] = results['ann_info']['centers2d']
results['depths'] = results['ann_info']['depths']
return results
def _load_labels_3d(self, results):
"""Private function to load label annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded label annotations.
"""
results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
return results
def _load_attr_labels(self, results):
"""Private function to load label annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded label annotations.
"""
results['attr_labels'] = results['ann_info']['attr_labels']
return results
def _load_masks_3d(self, results):
"""Private function to load 3D mask annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded 3D mask annotations.
"""
pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
mask_bytes = self.file_client.get(pts_instance_mask_path)
pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int64)
except ConnectionError:
mmcv.check_file_exist(pts_instance_mask_path)
pts_instance_mask = np.fromfile(
pts_instance_mask_path, dtype=np.int64)
results['pts_instance_mask'] = pts_instance_mask
results['pts_mask_fields'].append('pts_instance_mask')
return results
def _load_semantic_seg_3d(self, results):
"""Private function to load 3D semantic segmentation annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing the semantic segmentation annotations.
"""
pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
mask_bytes = self.file_client.get(pts_semantic_mask_path)
# add .copy() to fix read-only bug
pts_semantic_mask = np.frombuffer(
mask_bytes, dtype=self.seg_3d_dtype).copy()
except ConnectionError:
mmcv.check_file_exist(pts_semantic_mask_path)
pts_semantic_mask = np.fromfile(
pts_semantic_mask_path, dtype=np.int64)
results['pts_semantic_mask'] = pts_semantic_mask
results['pts_seg_fields'].append('pts_semantic_mask')
return results
def __call__(self, results):
"""Call function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.
Returns:
dict: The dict containing loaded 3D bounding box, label, mask and
semantic segmentation annotations.
"""
results = super().__call__(results)
if self.with_bbox_3d:
results = self._load_bboxes_3d(results)
if results is None:
return None
if self.with_bbox_depth:
results = self._load_bboxes_depth(results)
if results is None:
return None
if self.with_label_3d:
results = self._load_labels_3d(results)
if self.with_attr_label:
results = self._load_attr_labels(results)
if self.with_mask_3d:
results = self._load_masks_3d(results)
if self.with_seg_3d:
results = self._load_semantic_seg_3d(results)
return results
def __repr__(self):
"""str: Return a string that describes the module."""
indent_str = ' '
repr_str = self.__class__.__name__ + '(\n'
repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, '
repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
repr_str += f'{indent_str}with_label={self.with_label}, '
repr_str += f'{indent_str}with_mask={self.with_mask}, '
repr_str += f'{indent_str}with_seg={self.with_seg}, '
repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, '
repr_str += f'{indent_str}poly2mask={self.poly2mask})'
return repr_str
@PIPELINES.register_module()
class LoadPointsFromFile(object):
"""Load Points From File.
Load points from file.
Args:
coord_type (str): The type of coordinates of points cloud.
Available options includes:
- 'LIDAR': Points in LiDAR coordinates.
- 'DEPTH': Points in depth coordinates, usually for indoor dataset.
- 'CAMERA': Points in camera coordinates.
load_dim (int, optional): The dimension of the loaded points.
Defaults to 6.
use_dim (list[int], optional): Which dimensions of the points to use.
Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
or use_dim=[0, 1, 2, 3] to use the intensity dimension.
shift_height (bool, optional): Whether to use shifted height.
Defaults to False.
use_color (bool, optional): Whether to use color features.
Defaults to False.
file_client_args (dict, optional): Config dict of file clients,
refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details. Defaults to dict(backend='disk').
"""
def __init__(self,
coord_type,
load_dim=6,
use_dim=[0, 1, 2],
shift_height=False,
use_color=False,
file_client_args=dict(backend='disk')):
self.shift_height = shift_height
self.use_color = use_color
if isinstance(use_dim, int):
use_dim = list(range(use_dim))
assert max(use_dim) < load_dim, \
f'Expect all used dimensions < {load_dim}, got {use_dim}'
assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH']
self.coord_type = coord_type
self.load_dim = load_dim
self.use_dim = use_dim
self.file_client_args = file_client_args.copy()
self.file_client = None
def _load_points(self, pts_filename):
"""Private function to load point clouds data.
Args:
pts_filename (str): Filename of point clouds data.
Returns:
np.ndarray: An array containing point clouds data.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
pts_bytes = self.file_client.get(pts_filename)
points = np.frombuffer(pts_bytes, dtype=np.float32)
except ConnectionError:
mmcv.check_file_exist(pts_filename)
if pts_filename.endswith('.npy'):
points = np.load(pts_filename)
else:
points = np.fromfile(pts_filename, dtype=np.float32)
return points
def __call__(self, results):
"""Call function to load points data from file.
Args:
results (dict): Result dict containing point clouds data.
Returns:
dict: The result dict containing the point clouds data.
Added key and value are described below.
- points (:obj:`BasePoints`): Point clouds data.
"""
pts_filename = results['pts_filename']
points = self._load_points(pts_filename)
points = points.reshape(-1, self.load_dim)
points = points[:, self.use_dim]
attribute_dims = None
if self.shift_height:
floor_height = np.percentile(points[:, 2], 0.99)
height = points[:, 2] - floor_height
points = np.concatenate(
[points[:, :3],
np.expand_dims(height, 1), points[:, 3:]], 1)
attribute_dims = dict(height=3)
if self.use_color:
assert len(self.use_dim) >= 6
if attribute_dims is None:
attribute_dims = dict()
attribute_dims.update(
dict(color=[
points.shape[1] - 3,
points.shape[1] - 2,
points.shape[1] - 1,
]))
points_class = get_points_type(self.coord_type)
points = points_class(
points, points_dim=points.shape[-1], attribute_dims=attribute_dims)
results['points'] = points
return results
def __repr__(self):
"""str: Return a string that describes the module."""
repr_str = self.__class__.__name__ + '('
repr_str += f'shift_height={self.shift_height}, '
repr_str += f'use_color={self.use_color}, '
repr_str += f'file_client_args={self.file_client_args}, '
repr_str += f'load_dim={self.load_dim}, '
repr_str += f'use_dim={self.use_dim})'
return repr_str
@PIPELINES.register_module()
class LoadPointsFromMultiSweeps(object):
"""Load points from multiple sweeps.
This is usually used for nuScenes dataset to utilize previous sweeps.
Args:
sweeps_num (int, optional): Number of sweeps. Defaults to 10.
load_dim (int, optional): Dimension number of the loaded points.
Defaults to 5.
use_dim (list[int], optional): Which dimension to use.
Defaults to [0, 1, 2, 4].
time_dim (int, optional): Which dimension to represent the timestamps
of each points. Defaults to 4.
file_client_args (dict, optional): Config dict of file clients,
refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details. Defaults to dict(backend='disk').
pad_empty_sweeps (bool, optional): Whether to repeat keyframe when
sweeps is empty. Defaults to False.
remove_close (bool, optional): Whether to remove close points.
Defaults to False.
test_mode (bool, optional): If `test_mode=True`, it will not
randomly sample sweeps but select the nearest N frames.
Defaults to False.
"""
def __init__(self,
sweeps_num=10,
load_dim=5,
use_dim=[0, 1, 2, 4],
time_dim=4,
file_client_args=dict(backend='disk'),
pad_empty_sweeps=False,
remove_close=False,
test_mode=False):
self.load_dim = load_dim
self.sweeps_num = sweeps_num
self.use_dim = use_dim
self.time_dim = time_dim
assert time_dim < load_dim, \
f'Expect the timestamp dimension < {load_dim}, got {time_dim}'
self.file_client_args = file_client_args.copy()
self.file_client = None
self.pad_empty_sweeps = pad_empty_sweeps
self.remove_close = remove_close
self.test_mode = test_mode
assert max(use_dim) < load_dim, \
f'Expect all used dimensions < {load_dim}, got {use_dim}'
def _load_points(self, pts_filename):
"""Private function to load point clouds data.
Args:
pts_filename (str): Filename of point clouds data.
Returns:
np.ndarray: An array containing point clouds data.
"""
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
pts_bytes = self.file_client.get(pts_filename)
points = np.frombuffer(pts_bytes, dtype=np.float32)
except ConnectionError:
mmcv.check_file_exist(pts_filename)
if pts_filename.endswith('.npy'):
points = np.load(pts_filename)
else:
points = np.fromfile(pts_filename, dtype=np.float32)
return points
def _remove_close(self, points, radius=1.0):
"""Removes point too close within a certain radius from origin.
Args:
points (np.ndarray | :obj:`BasePoints`): Sweep points.
radius (float, optional): Radius below which points are removed.
Defaults to 1.0.
Returns:
np.ndarray: Points after removing.
"""
if isinstance(points, np.ndarray):
points_numpy = points
elif isinstance(points, BasePoints):
points_numpy = points.tensor.numpy()
else:
raise NotImplementedError
x_filt = np.abs(points_numpy[:, 0]) < radius
y_filt = np.abs(points_numpy[:, 1]) < radius
not_close = np.logical_not(np.logical_and(x_filt, y_filt))
return points[not_close]
def __call__(self, results):
"""Call function to load multi-sweep point clouds from files.
Args:
results (dict): Result dict containing multi-sweep point cloud
filenames.
Returns:
dict: The result dict containing the multi-sweep points data.
Added key and value are described below.
- points (np.ndarray | :obj:`BasePoints`): Multi-sweep point
cloud arrays.
"""
points = results['points']
points.tensor[:, self.time_dim] = 0
sweep_points_list = [points]
ts = results['timestamp']
if self.pad_empty_sweeps and len(results['sweeps']) == 0:
for i in range(self.sweeps_num):
if self.remove_close:
sweep_points_list.append(self._remove_close(points))
else:
sweep_points_list.append(points)
else:
if len(results['sweeps']) <= self.sweeps_num:
choices = np.arange(len(results['sweeps']))
elif self.test_mode:
choices = np.arange(self.sweeps_num)
else:
choices = np.random.choice(
len(results['sweeps']), self.sweeps_num, replace=False)
for idx in choices:
sweep = results['sweeps'][idx]
points_sweep = self._load_points(sweep['data_path'])
points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
if self.remove_close:
points_sweep = self._remove_close(points_sweep)
sweep_ts = sweep['timestamp'] / 1e6
points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
'sensor2lidar_rotation'].T
points_sweep[:, :3] += sweep['sensor2lidar_translation']
points_sweep[:, self.time_dim] = ts - sweep_ts
points_sweep = points.new_point(points_sweep)
sweep_points_list.append(points_sweep)
points = points.cat(sweep_points_list)
points = points[:, self.use_dim]
results['points'] = points
return results
def __repr__(self):
"""str: Return a string that describes the module."""
return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'