mirror of https://github.com/FoundationVision/GLEE
245 lines
8.9 KiB
Python
245 lines
8.9 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
import copy
|
||
|
import itertools
|
||
|
import logging
|
||
|
import numpy as np
|
||
|
import pickle
|
||
|
import random
|
||
|
import torch.utils.data as data
|
||
|
from torch.utils.data.sampler import Sampler
|
||
|
|
||
|
from detectron2.utils.serialize import PicklableWrapper
|
||
|
|
||
|
__all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset", "ToIterableDataset"]
|
||
|
|
||
|
|
||
|
def _shard_iterator_dataloader_worker(iterable):
|
||
|
# Shard the iterable if we're currently inside pytorch dataloader worker.
|
||
|
worker_info = data.get_worker_info()
|
||
|
if worker_info is None or worker_info.num_workers == 1:
|
||
|
# do nothing
|
||
|
yield from iterable
|
||
|
else:
|
||
|
yield from itertools.islice(iterable, worker_info.id, None, worker_info.num_workers)
|
||
|
|
||
|
|
||
|
class _MapIterableDataset(data.IterableDataset):
|
||
|
"""
|
||
|
Map a function over elements in an IterableDataset.
|
||
|
|
||
|
Similar to pytorch's MapIterDataPipe, but support filtering when map_func
|
||
|
returns None.
|
||
|
|
||
|
This class is not public-facing. Will be called by `MapDataset`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dataset, map_func):
|
||
|
self._dataset = dataset
|
||
|
self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self._dataset)
|
||
|
|
||
|
def __iter__(self):
|
||
|
for x in map(self._map_func, self._dataset):
|
||
|
if x is not None:
|
||
|
yield x
|
||
|
|
||
|
|
||
|
class MapDataset(data.Dataset):
|
||
|
"""
|
||
|
Map a function over the elements in a dataset.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dataset, map_func):
|
||
|
"""
|
||
|
Args:
|
||
|
dataset: a dataset where map function is applied. Can be either
|
||
|
map-style or iterable dataset. When given an iterable dataset,
|
||
|
the returned object will also be an iterable dataset.
|
||
|
map_func: a callable which maps the element in dataset. map_func can
|
||
|
return None to skip the data (e.g. in case of errors).
|
||
|
How None is handled depends on the style of `dataset`.
|
||
|
If `dataset` is map-style, it randomly tries other elements.
|
||
|
If `dataset` is iterable, it skips the data and tries the next.
|
||
|
"""
|
||
|
self._dataset = dataset
|
||
|
self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work
|
||
|
|
||
|
self._rng = random.Random(42)
|
||
|
self._fallback_candidates = set(range(len(dataset)))
|
||
|
|
||
|
def __new__(cls, dataset, map_func):
|
||
|
is_iterable = isinstance(dataset, data.IterableDataset)
|
||
|
if is_iterable:
|
||
|
return _MapIterableDataset(dataset, map_func)
|
||
|
else:
|
||
|
return super().__new__(cls)
|
||
|
|
||
|
def __getnewargs__(self):
|
||
|
return self._dataset, self._map_func
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self._dataset)
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
retry_count = 0
|
||
|
cur_idx = int(idx)
|
||
|
|
||
|
while True:
|
||
|
data = self._map_func(self._dataset[cur_idx])
|
||
|
if data is not None:
|
||
|
self._fallback_candidates.add(cur_idx)
|
||
|
return data
|
||
|
|
||
|
# _map_func fails for this idx, use a random new index from the pool
|
||
|
retry_count += 1
|
||
|
self._fallback_candidates.discard(cur_idx)
|
||
|
cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0]
|
||
|
|
||
|
if retry_count >= 3:
|
||
|
logger = logging.getLogger(__name__)
|
||
|
logger.warning(
|
||
|
"Failed to apply `_map_func` for idx: {}, retry count: {}".format(
|
||
|
idx, retry_count
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
class DatasetFromList(data.Dataset):
|
||
|
"""
|
||
|
Wrap a list to a torch Dataset. It produces elements of the list as data.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, lst: list, copy: bool = True, serialize: bool = True):
|
||
|
"""
|
||
|
Args:
|
||
|
lst (list): a list which contains elements to produce.
|
||
|
copy (bool): whether to deepcopy the element when producing it,
|
||
|
so that the result can be modified in place without affecting the
|
||
|
source in the list.
|
||
|
serialize (bool): whether to hold memory using serialized objects, when
|
||
|
enabled, data loader workers can use shared RAM from master
|
||
|
process instead of making a copy.
|
||
|
"""
|
||
|
self._lst = lst
|
||
|
self._copy = copy
|
||
|
self._serialize = serialize
|
||
|
|
||
|
def _serialize(data):
|
||
|
buffer = pickle.dumps(data, protocol=-1)
|
||
|
return np.frombuffer(buffer, dtype=np.uint8)
|
||
|
|
||
|
if self._serialize:
|
||
|
logger = logging.getLogger(__name__)
|
||
|
logger.info(
|
||
|
"Serializing {} elements to byte tensors and concatenating them all ...".format(
|
||
|
len(self._lst)
|
||
|
)
|
||
|
)
|
||
|
self._lst = [_serialize(x) for x in self._lst]
|
||
|
self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64)
|
||
|
self._addr = np.cumsum(self._addr)
|
||
|
self._lst = np.concatenate(self._lst)
|
||
|
logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024 ** 2))
|
||
|
|
||
|
def __len__(self):
|
||
|
if self._serialize:
|
||
|
return len(self._addr)
|
||
|
else:
|
||
|
return len(self._lst)
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
if self._serialize:
|
||
|
start_addr = 0 if idx == 0 else self._addr[idx - 1].item()
|
||
|
end_addr = self._addr[idx].item()
|
||
|
bytes = memoryview(self._lst[start_addr:end_addr])
|
||
|
return pickle.loads(bytes)
|
||
|
elif self._copy:
|
||
|
return copy.deepcopy(self._lst[idx])
|
||
|
else:
|
||
|
return self._lst[idx]
|
||
|
|
||
|
|
||
|
class ToIterableDataset(data.IterableDataset):
|
||
|
"""
|
||
|
Convert an old indices-based (also called map-style) dataset
|
||
|
to an iterable-style dataset.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dataset: data.Dataset, sampler: Sampler, shard_sampler: bool = True):
|
||
|
"""
|
||
|
Args:
|
||
|
dataset: an old-style dataset with ``__getitem__``
|
||
|
sampler: a cheap iterable that produces indices to be applied on ``dataset``.
|
||
|
shard_sampler: whether to shard the sampler based on the current pytorch data loader
|
||
|
worker id. When an IterableDataset is forked by pytorch's DataLoader into multiple
|
||
|
workers, it is responsible for sharding its data based on worker id so that workers
|
||
|
don't produce identical data.
|
||
|
|
||
|
Most samplers (like our TrainingSampler) do not shard based on dataloader worker id
|
||
|
and this argument should be set to True. But certain samplers may be already
|
||
|
sharded, in that case this argument should be set to False.
|
||
|
"""
|
||
|
assert not isinstance(dataset, data.IterableDataset), dataset
|
||
|
assert isinstance(sampler, Sampler), sampler
|
||
|
self.dataset = dataset
|
||
|
self.sampler = sampler
|
||
|
self.shard_sampler = shard_sampler
|
||
|
|
||
|
def __iter__(self):
|
||
|
if not self.shard_sampler:
|
||
|
sampler = self.sampler
|
||
|
else:
|
||
|
# With map-style dataset, `DataLoader(dataset, sampler)` runs the
|
||
|
# sampler in main process only. But `DataLoader(ToIterableDataset(dataset, sampler))`
|
||
|
# will run sampler in every of the N worker. So we should only keep 1/N of the ids on
|
||
|
# each worker. The assumption is that sampler is cheap to iterate so it's fine to
|
||
|
# discard ids in workers.
|
||
|
sampler = _shard_iterator_dataloader_worker(self.sampler)
|
||
|
for idx in sampler:
|
||
|
yield self.dataset[idx]
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.sampler)
|
||
|
|
||
|
|
||
|
class AspectRatioGroupedDataset(data.IterableDataset):
|
||
|
"""
|
||
|
Batch data that have similar aspect ratio together.
|
||
|
In this implementation, images whose aspect ratio < (or >) 1 will
|
||
|
be batched together.
|
||
|
This improves training speed because the images then need less padding
|
||
|
to form a batch.
|
||
|
|
||
|
It assumes the underlying dataset produces dicts with "width" and "height" keys.
|
||
|
It will then produce a list of original dicts with length = batch_size,
|
||
|
all with similar aspect ratios.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dataset, batch_size):
|
||
|
"""
|
||
|
Args:
|
||
|
dataset: an iterable. Each element must be a dict with keys
|
||
|
"width" and "height", which will be used to batch data.
|
||
|
batch_size (int):
|
||
|
"""
|
||
|
self.dataset = dataset
|
||
|
self.batch_size = batch_size
|
||
|
self._buckets = [[] for _ in range(2)]
|
||
|
# Hard-coded two aspect ratio groups: w > h and w < h.
|
||
|
# Can add support for more aspect ratio groups, but doesn't seem useful
|
||
|
|
||
|
def __iter__(self):
|
||
|
for d in self.dataset:
|
||
|
w, h = d["width"], d["height"]
|
||
|
bucket_id = 0 if w > h else 1
|
||
|
bucket = self._buckets[bucket_id]
|
||
|
bucket.append(d)
|
||
|
if len(bucket) == self.batch_size:
|
||
|
data = bucket[:]
|
||
|
# Clear bucket first, because code after yield is not
|
||
|
# guaranteed to execute
|
||
|
del bucket[:]
|
||
|
yield data
|