mirror of https://github.com/FoundationVision/GLEE
111 lines
4.2 KiB
Python
111 lines
4.2 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
from __future__ import division
|
||
|
from typing import Any, List, Tuple
|
||
|
import torch
|
||
|
from torch import device
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from detectron2.layers.wrappers import shapes_to_tensor
|
||
|
|
||
|
|
||
|
class ImageList(object):
|
||
|
"""
|
||
|
Structure that holds a list of images (of possibly
|
||
|
varying sizes) as a single tensor.
|
||
|
This works by padding the images to the same size.
|
||
|
The original sizes of each image is stored in `image_sizes`.
|
||
|
|
||
|
Attributes:
|
||
|
image_sizes (list[tuple[int, int]]): each tuple is (h, w).
|
||
|
During tracing, it becomes list[Tensor] instead.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, tensor: torch.Tensor, image_sizes: List[Tuple[int, int]]):
|
||
|
"""
|
||
|
Arguments:
|
||
|
tensor (Tensor): of shape (N, H, W) or (N, C_1, ..., C_K, H, W) where K >= 1
|
||
|
image_sizes (list[tuple[int, int]]): Each tuple is (h, w). It can
|
||
|
be smaller than (H, W) due to padding.
|
||
|
"""
|
||
|
self.tensor = tensor
|
||
|
self.image_sizes = image_sizes
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self.image_sizes)
|
||
|
|
||
|
def __getitem__(self, idx) -> torch.Tensor:
|
||
|
"""
|
||
|
Access the individual image in its original size.
|
||
|
|
||
|
Args:
|
||
|
idx: int or slice
|
||
|
|
||
|
Returns:
|
||
|
Tensor: an image of shape (H, W) or (C_1, ..., C_K, H, W) where K >= 1
|
||
|
"""
|
||
|
size = self.image_sizes[idx]
|
||
|
return self.tensor[idx, ..., : size[0], : size[1]]
|
||
|
|
||
|
@torch.jit.unused
|
||
|
def to(self, *args: Any, **kwargs: Any) -> "ImageList":
|
||
|
cast_tensor = self.tensor.to(*args, **kwargs)
|
||
|
return ImageList(cast_tensor, self.image_sizes)
|
||
|
|
||
|
@property
|
||
|
def device(self) -> device:
|
||
|
return self.tensor.device
|
||
|
|
||
|
@staticmethod
|
||
|
def from_tensors(
|
||
|
tensors: List[torch.Tensor], size_divisibility: int = 0, pad_value: float = 0.0
|
||
|
) -> "ImageList":
|
||
|
"""
|
||
|
Args:
|
||
|
tensors: a tuple or list of `torch.Tensor`, each of shape (Hi, Wi) or
|
||
|
(C_1, ..., C_K, Hi, Wi) where K >= 1. The Tensors will be padded
|
||
|
to the same shape with `pad_value`.
|
||
|
size_divisibility (int): If `size_divisibility > 0`, add padding to ensure
|
||
|
the common height and width is divisible by `size_divisibility`.
|
||
|
This depends on the model and many models need a divisibility of 32.
|
||
|
pad_value (float): value to pad
|
||
|
|
||
|
Returns:
|
||
|
an `ImageList`.
|
||
|
"""
|
||
|
assert len(tensors) > 0
|
||
|
assert isinstance(tensors, (tuple, list))
|
||
|
for t in tensors:
|
||
|
assert isinstance(t, torch.Tensor), type(t)
|
||
|
assert t.shape[:-2] == tensors[0].shape[:-2], t.shape
|
||
|
|
||
|
image_sizes = [(im.shape[-2], im.shape[-1]) for im in tensors]
|
||
|
image_sizes_tensor = [shapes_to_tensor(x) for x in image_sizes]
|
||
|
max_size = torch.stack(image_sizes_tensor).max(0).values
|
||
|
|
||
|
if size_divisibility > 1:
|
||
|
stride = size_divisibility
|
||
|
# the last two dims are H,W, both subject to divisibility requirement
|
||
|
max_size = (max_size + (stride - 1)).div(stride, rounding_mode="floor") * stride
|
||
|
|
||
|
# handle weirdness of scripting and tracing ...
|
||
|
if torch.jit.is_scripting():
|
||
|
max_size: List[int] = max_size.to(dtype=torch.long).tolist()
|
||
|
else:
|
||
|
if torch.jit.is_tracing():
|
||
|
image_sizes = image_sizes_tensor
|
||
|
|
||
|
if len(tensors) == 1:
|
||
|
# This seems slightly (2%) faster.
|
||
|
# TODO: check whether it's faster for multiple images as well
|
||
|
image_size = image_sizes[0]
|
||
|
padding_size = [0, max_size[-1] - image_size[1], 0, max_size[-2] - image_size[0]]
|
||
|
batched_imgs = F.pad(tensors[0], padding_size, value=pad_value).unsqueeze_(0)
|
||
|
else:
|
||
|
# max_size can be a tensor in tracing mode, therefore convert to list
|
||
|
batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size)
|
||
|
batched_imgs = tensors[0].new_full(batch_shape, pad_value)
|
||
|
for img, pad_img in zip(tensors, batched_imgs):
|
||
|
pad_img[..., : img.shape[-2], : img.shape[-1]].copy_(img)
|
||
|
|
||
|
return ImageList(batched_imgs.contiguous(), image_sizes)
|