mirror of https://github.com/FoundationVision/GLEE
166 lines
5.6 KiB
Python
166 lines
5.6 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
import logging
|
|
import unittest
|
|
import torch
|
|
|
|
from detectron2.modeling.poolers import ROIPooler
|
|
from detectron2.structures import Boxes, RotatedBoxes
|
|
from detectron2.utils.testing import random_boxes
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class TestROIPooler(unittest.TestCase):
|
|
def _test_roialignv2_roialignrotated_match(self, device):
|
|
pooler_resolution = 14
|
|
canonical_level = 4
|
|
canonical_scale_factor = 2 ** canonical_level
|
|
pooler_scales = (1.0 / canonical_scale_factor,)
|
|
sampling_ratio = 0
|
|
|
|
N, C, H, W = 2, 4, 10, 8
|
|
N_rois = 10
|
|
std = 11
|
|
mean = 0
|
|
feature = (torch.rand(N, C, H, W) - 0.5) * 2 * std + mean
|
|
|
|
features = [feature.to(device)]
|
|
|
|
rois = []
|
|
rois_rotated = []
|
|
for _ in range(N):
|
|
boxes = random_boxes(N_rois, W * canonical_scale_factor)
|
|
rotated_boxes = torch.zeros(N_rois, 5)
|
|
rotated_boxes[:, 0] = (boxes[:, 0] + boxes[:, 2]) / 2.0
|
|
rotated_boxes[:, 1] = (boxes[:, 1] + boxes[:, 3]) / 2.0
|
|
rotated_boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
|
|
rotated_boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
|
|
rois.append(Boxes(boxes).to(device))
|
|
rois_rotated.append(RotatedBoxes(rotated_boxes).to(device))
|
|
|
|
roialignv2_pooler = ROIPooler(
|
|
output_size=pooler_resolution,
|
|
scales=pooler_scales,
|
|
sampling_ratio=sampling_ratio,
|
|
pooler_type="ROIAlignV2",
|
|
)
|
|
|
|
roialignv2_out = roialignv2_pooler(features, rois)
|
|
|
|
roialignrotated_pooler = ROIPooler(
|
|
output_size=pooler_resolution,
|
|
scales=pooler_scales,
|
|
sampling_ratio=sampling_ratio,
|
|
pooler_type="ROIAlignRotated",
|
|
)
|
|
|
|
roialignrotated_out = roialignrotated_pooler(features, rois_rotated)
|
|
|
|
self.assertTrue(torch.allclose(roialignv2_out, roialignrotated_out, atol=1e-4))
|
|
|
|
def test_roialignv2_roialignrotated_match_cpu(self):
|
|
self._test_roialignv2_roialignrotated_match(device="cpu")
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
|
|
def test_roialignv2_roialignrotated_match_cuda(self):
|
|
self._test_roialignv2_roialignrotated_match(device="cuda")
|
|
|
|
def _test_scriptability(self, device):
|
|
pooler_resolution = 14
|
|
canonical_level = 4
|
|
canonical_scale_factor = 2 ** canonical_level
|
|
pooler_scales = (1.0 / canonical_scale_factor,)
|
|
sampling_ratio = 0
|
|
|
|
N, C, H, W = 2, 4, 10, 8
|
|
N_rois = 10
|
|
std = 11
|
|
mean = 0
|
|
feature = (torch.rand(N, C, H, W) - 0.5) * 2 * std + mean
|
|
|
|
features = [feature.to(device)]
|
|
|
|
rois = []
|
|
for _ in range(N):
|
|
boxes = random_boxes(N_rois, W * canonical_scale_factor)
|
|
|
|
rois.append(Boxes(boxes).to(device))
|
|
|
|
roialignv2_pooler = ROIPooler(
|
|
output_size=pooler_resolution,
|
|
scales=pooler_scales,
|
|
sampling_ratio=sampling_ratio,
|
|
pooler_type="ROIAlignV2",
|
|
)
|
|
|
|
roialignv2_out = roialignv2_pooler(features, rois)
|
|
scripted_roialignv2_out = torch.jit.script(roialignv2_pooler)(features, rois)
|
|
self.assertTrue(torch.equal(roialignv2_out, scripted_roialignv2_out))
|
|
|
|
def test_scriptability_cpu(self):
|
|
self._test_scriptability(device="cpu")
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
|
|
def test_scriptability_gpu(self):
|
|
self._test_scriptability(device="cuda")
|
|
|
|
def test_no_images(self):
|
|
N, C, H, W = 0, 32, 32, 32
|
|
feature = torch.rand(N, C, H, W) - 0.5
|
|
features = [feature]
|
|
pooler = ROIPooler(
|
|
output_size=14, scales=(1.0,), sampling_ratio=0.0, pooler_type="ROIAlignV2"
|
|
)
|
|
output = pooler.forward(features, [])
|
|
self.assertEqual(output.shape, (0, C, 14, 14))
|
|
|
|
def test_roi_pooler_tracing(self):
|
|
class Model(torch.nn.Module):
|
|
def __init__(self, roi):
|
|
super(Model, self).__init__()
|
|
self.roi = roi
|
|
|
|
def forward(self, x, boxes):
|
|
return self.roi(x, [Boxes(boxes)])
|
|
|
|
pooler_resolution = 14
|
|
canonical_level = 4
|
|
canonical_scale_factor = 2 ** canonical_level
|
|
pooler_scales = (1.0 / canonical_scale_factor, 0.5 / canonical_scale_factor)
|
|
sampling_ratio = 0
|
|
|
|
N, C, H, W = 1, 4, 10, 8
|
|
N_rois = 10
|
|
std = 11
|
|
mean = 0
|
|
feature = (torch.rand(N, C, H, W) - 0.5) * 2 * std + mean
|
|
feature = [feature, feature]
|
|
|
|
rois = random_boxes(N_rois, W * canonical_scale_factor)
|
|
# Add one larger box so that this level has only one box.
|
|
# This may trigger the bug https://github.com/pytorch/pytorch/issues/49852
|
|
# that we shall workaround.
|
|
rois = torch.cat([rois, torch.tensor([[0, 0, 448, 448]])])
|
|
|
|
model = Model(
|
|
ROIPooler(
|
|
output_size=pooler_resolution,
|
|
scales=pooler_scales,
|
|
sampling_ratio=sampling_ratio,
|
|
pooler_type="ROIAlign",
|
|
)
|
|
)
|
|
|
|
with torch.no_grad():
|
|
func = torch.jit.trace(model, (feature, rois))
|
|
o = func(feature, rois)
|
|
self.assertEqual(o.shape, (11, 4, 14, 14))
|
|
o = func(feature, rois[:5])
|
|
self.assertEqual(o.shape, (5, 4, 14, 14))
|
|
o = func(feature, random_boxes(20, W * canonical_scale_factor))
|
|
self.assertEqual(o.shape, (20, 4, 14, 14))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|