[CVPR2024 Highlight]GLEE: General Object Foundation Model for Images and Videos at Scale
 
 
 
 
Go to file
wjf5203 c16a4e7999 Initial commit 2024-03-19 01:50:17 +08:00
app Initial commit 2024-03-19 01:50:17 +08:00
assets/images Initial commit 2024-03-19 01:50:17 +08:00
.gitignore Initial commit 2024-03-19 01:50:17 +08:00
LICENSE Initial commit 2024-03-19 01:50:17 +08:00
README.md Initial commit 2024-03-19 01:50:17 +08:00

README.md

GLEE: General Object Foundation Model for Images and Videos at Scale

Junfeng Wu*, Yi Jiang*, Qihao Liu, Zehuan Yuan, Xiang Bai,and Song Bai

* Equal Contribution, Correspondence

[Project Page](https://glee-vision.github.io/)

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWCPWC PWC PWC PWC PWC

IMAGE ALT TEXT

data_demo

Highlight:

  • GLEE is a general object foundation model jointly trained on over ten million images from various benchmarks with diverse levels of supervision.
  • GLEE is capable of addressing a wide range of object-centric tasks simultaneously while maintaining state-of-the-art performance.
  • GLEE demonstrates remarkable versatility and robust zero-shot transferability across a spectrum of object-level image and video tasks, and able to serve as a foundational component for enhancing other architectures or models.

We will release the following contents for GLEE

  • Demo Code
  • Model Checkpoint
  • Comprehensive User Guide
  • Training Code
  • Evaluation Code

Run the demo APP

Try our online demo app on [HuggingFace Demo] or use it locally:

git clone https://github.com/FoundationVision/GLEE
cd GLEE/app/
pip install -r requirements.txt

Download the pretrain weight for GLEE-Lite and GLEE-Plus

# support CPU and GPU running
python app.py

Introduction

GLEE consists of an image encoder, a text encoder, a visual prompter, and an object decoder, as illustrated in Figure. The text encoder processes arbitrary descriptions related to the task, including 1) object category list 2object names in any form 3captions about objects 4referring expressions. The visual prompter encodes user inputs such as 1) points 2) bounding boxes 3) scribbles during interactive segmentation into corresponding visual representations of target objects. Then they are integrated into a detector for extracting objects from images according to textual and visual input.

pipeline

Based on the above designs, GLEE can be used to seamlessly unify a wide range of object perception tasks in images and videos, including object detection, instance segmentation, grounding, multi-target tracking (MOT), video instance segmentation (VIS), video object segmentation (VOS), interactive segmentation and tracking, and supports open-world/large-vocabulary image and video detection and segmentation tasks.

Results

Image-level tasks

imagetask

odinw

Video-level tasks

videotask

visvosrvos`

Citing GLEE

@misc{wu2023GLEE,
  author= {Junfeng Wu, Yi Jiang, Qihao Liu, Zehuan Yuan, Xiang Bai, Song Bai},
  title = {General Object Foundation Model for Images and Videos at Scale},
  year={2023},
  eprint={2312.09158},
  archivePrefix={arXiv}
}