mirror of https://github.com/FoundationVision/GLEE
187 lines
7.3 KiB
Python
187 lines
7.3 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
import unittest
|
|
|
|
from detectron2.layers import ShapeSpec
|
|
from detectron2.modeling.mmdet_wrapper import MMDetBackbone, MMDetDetector
|
|
|
|
try:
|
|
import mmdet.models # noqa
|
|
|
|
HAS_MMDET = True
|
|
except ImportError:
|
|
HAS_MMDET = False
|
|
|
|
|
|
@unittest.skipIf(not HAS_MMDET, "mmdet not available")
|
|
class TestMMDetWrapper(unittest.TestCase):
|
|
def test_backbone(self):
|
|
MMDetBackbone(
|
|
backbone=dict(
|
|
type="DetectoRS_ResNet",
|
|
conv_cfg=dict(type="ConvAWS"),
|
|
sac=dict(type="SAC", use_deform=True),
|
|
stage_with_sac=(False, True, True, True),
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3),
|
|
frozen_stages=1,
|
|
norm_cfg=dict(type="BN", requires_grad=True),
|
|
norm_eval=True,
|
|
style="pytorch",
|
|
),
|
|
neck=dict(
|
|
type="FPN",
|
|
in_channels=[256, 512, 1024, 2048],
|
|
out_channels=256,
|
|
num_outs=5,
|
|
),
|
|
# skip pretrained model for tests
|
|
# pretrained_backbone="torchvision://resnet50",
|
|
output_shapes=[ShapeSpec(channels=256, stride=s) for s in [4, 8, 16, 32, 64]],
|
|
output_names=["p2", "p3", "p4", "p5", "p6"],
|
|
)
|
|
|
|
def test_detector(self):
|
|
# a basic R50 Mask R-CNN
|
|
MMDetDetector(
|
|
detector=dict(
|
|
type="MaskRCNN",
|
|
backbone=dict(
|
|
type="ResNet",
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3),
|
|
frozen_stages=1,
|
|
norm_cfg=dict(type="BN", requires_grad=True),
|
|
norm_eval=True,
|
|
style="pytorch",
|
|
# skip pretrained model for tests
|
|
# init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'))
|
|
),
|
|
neck=dict(
|
|
type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5
|
|
),
|
|
rpn_head=dict(
|
|
type="RPNHead",
|
|
in_channels=256,
|
|
feat_channels=256,
|
|
anchor_generator=dict(
|
|
type="AnchorGenerator",
|
|
scales=[8],
|
|
ratios=[0.5, 1.0, 2.0],
|
|
strides=[4, 8, 16, 32, 64],
|
|
),
|
|
bbox_coder=dict(
|
|
type="DeltaXYWHBBoxCoder",
|
|
target_means=[0.0, 0.0, 0.0, 0.0],
|
|
target_stds=[1.0, 1.0, 1.0, 1.0],
|
|
),
|
|
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0),
|
|
loss_bbox=dict(type="L1Loss", loss_weight=1.0),
|
|
),
|
|
roi_head=dict(
|
|
type="StandardRoIHead",
|
|
bbox_roi_extractor=dict(
|
|
type="SingleRoIExtractor",
|
|
roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0),
|
|
out_channels=256,
|
|
featmap_strides=[4, 8, 16, 32],
|
|
),
|
|
bbox_head=dict(
|
|
type="Shared2FCBBoxHead",
|
|
in_channels=256,
|
|
fc_out_channels=1024,
|
|
roi_feat_size=7,
|
|
num_classes=80,
|
|
bbox_coder=dict(
|
|
type="DeltaXYWHBBoxCoder",
|
|
target_means=[0.0, 0.0, 0.0, 0.0],
|
|
target_stds=[0.1, 0.1, 0.2, 0.2],
|
|
),
|
|
reg_class_agnostic=False,
|
|
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0),
|
|
loss_bbox=dict(type="L1Loss", loss_weight=1.0),
|
|
),
|
|
mask_roi_extractor=dict(
|
|
type="SingleRoIExtractor",
|
|
roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0),
|
|
out_channels=256,
|
|
featmap_strides=[4, 8, 16, 32],
|
|
),
|
|
mask_head=dict(
|
|
type="FCNMaskHead",
|
|
num_convs=4,
|
|
in_channels=256,
|
|
conv_out_channels=256,
|
|
num_classes=80,
|
|
loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0),
|
|
),
|
|
),
|
|
# model training and testing settings
|
|
train_cfg=dict(
|
|
rpn=dict(
|
|
assigner=dict(
|
|
type="MaxIoUAssigner",
|
|
pos_iou_thr=0.7,
|
|
neg_iou_thr=0.3,
|
|
min_pos_iou=0.3,
|
|
match_low_quality=True,
|
|
ignore_iof_thr=-1,
|
|
),
|
|
sampler=dict(
|
|
type="RandomSampler",
|
|
num=256,
|
|
pos_fraction=0.5,
|
|
neg_pos_ub=-1,
|
|
add_gt_as_proposals=False,
|
|
),
|
|
allowed_border=-1,
|
|
pos_weight=-1,
|
|
debug=False,
|
|
),
|
|
rpn_proposal=dict(
|
|
nms_pre=2000,
|
|
max_per_img=1000,
|
|
nms=dict(type="nms", iou_threshold=0.7),
|
|
min_bbox_size=0,
|
|
),
|
|
rcnn=dict(
|
|
assigner=dict(
|
|
type="MaxIoUAssigner",
|
|
pos_iou_thr=0.5,
|
|
neg_iou_thr=0.5,
|
|
min_pos_iou=0.5,
|
|
match_low_quality=True,
|
|
ignore_iof_thr=-1,
|
|
),
|
|
sampler=dict(
|
|
type="RandomSampler",
|
|
num=512,
|
|
pos_fraction=0.25,
|
|
neg_pos_ub=-1,
|
|
add_gt_as_proposals=True,
|
|
),
|
|
mask_size=28,
|
|
pos_weight=-1,
|
|
debug=False,
|
|
),
|
|
),
|
|
test_cfg=dict(
|
|
rpn=dict(
|
|
nms_pre=1000,
|
|
max_per_img=1000,
|
|
nms=dict(type="nms", iou_threshold=0.7),
|
|
min_bbox_size=0,
|
|
),
|
|
rcnn=dict(
|
|
score_thr=0.05,
|
|
nms=dict(type="nms", iou_threshold=0.5),
|
|
max_per_img=100,
|
|
mask_thr_binary=0.5,
|
|
),
|
|
),
|
|
),
|
|
pixel_mean=[1, 2, 3],
|
|
pixel_std=[1, 2, 3],
|
|
)
|