GroundingDINO/demo/gradio_app.py

126 lines
4.4 KiB
Python
Raw Normal View History

2023-03-28 15:41:55 +08:00
import argparse
from functools import partial
import cv2
import requests
import os
from io import BytesIO
from PIL import Image
import numpy as np
from pathlib import Path
2023-03-28 16:30:45 +08:00
2023-03-28 15:41:55 +08:00
import warnings
import torch
2023-03-28 16:30:45 +08:00
# prepare the environment
2023-03-28 15:41:55 +08:00
os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
2024-04-22 16:01:29 +08:00
os.system("pip install gradio==3.50.2")
2023-03-28 16:30:45 +08:00
2023-03-28 15:41:55 +08:00
warnings.filterwarnings("ignore")
2023-03-28 16:30:45 +08:00
import gradio as gr
2023-03-28 15:41:55 +08:00
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T
from huggingface_hub import hf_hub_download
# Use this command for evaluate the Grounding DINO model
2023-03-28 15:41:55 +08:00
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
2023-03-28 16:30:45 +08:00
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
2023-03-28 15:41:55 +08:00
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
2023-03-28 16:30:45 +08:00
args.device = device
2023-03-28 15:41:55 +08:00
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
init_image = input_image.convert("RGB")
original_size = init_image.size
_, image_tensor = image_transform_grounding(init_image)
image_pil: Image = image_transform_grounding_for_vis(init_image)
# run grounidng
2023-03-28 16:30:45 +08:00
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu')
2023-03-28 15:41:55 +08:00
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
return image_with_box
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
2023-03-28 16:30:45 +08:00
parser.add_argument("--share", action="store_true", help="share the app")
2023-03-28 15:41:55 +08:00
args = parser.parse_args()
block = gr.Blocks().queue()
with block:
2023-03-28 16:30:45 +08:00
gr.Markdown("# [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO)")
2023-03-28 15:41:55 +08:00
gr.Markdown("### Open-World Detection with Grounding DINO")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
grounding_caption = gr.Textbox(label="Detection Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
with gr.Column():
gallery = gr.outputs.Image(
type="pil",
# label="grounding results"
).style(full_width=True, full_height=True)
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
run_button.click(fn=run_grounding, inputs=[
input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery])
2023-03-28 16:30:45 +08:00
2023-03-28 15:41:55 +08:00
block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share)