back to hf model

pull/295/head
Skwarson96 2024-02-19 20:54:18 +01:00
parent 5b0a38d78f
commit 18ecbcb29b
1 changed files with 28 additions and 10 deletions

View File

@ -1,5 +1,6 @@
import argparse
import cv2
import os
from PIL import Image
import numpy as np
@ -8,9 +9,9 @@ import warnings
import torch
# prepare the environment
# os.system("python setup.py build develop --user")
# os.system("pip install packaging==21.3")
# os.system("pip install gradio")
os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
os.system("pip install gradio")
warnings.filterwarnings("ignore")
@ -20,9 +21,30 @@ import gradio as gr
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict, load_model
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T
from huggingface_hub import hf_hub_download
# Use this command for evaluate the Grounding DINO model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
device = 'cuda'
def load_model_hf(model_config_path, repo_id, filename, device='cuda'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location=device)
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def image_transform_grounding(init_image):
transform = T.Compose([
@ -40,11 +62,7 @@ def image_transform_grounding_for_vis(init_image):
image, _ = transform(init_image, None) # 3, h, w
return image
config_file = "groundingdino/config/GroundingDINO_SwinB_cfg.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "weights/groundingdino_swinb_cogcoor.pth"
model = load_model(config_file, ckpt_filenmae, device='cuda')
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae, device)
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
init_image = input_image.convert("RGB")
@ -52,7 +70,7 @@ def run_grounding(input_image, grounding_caption, box_threshold, text_threshold)
image_pil: Image = image_transform_grounding_for_vis(init_image)
# run grounidng
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cuda')
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device=device)
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))