back to hf model
parent
5b0a38d78f
commit
18ecbcb29b
|
@ -1,5 +1,6 @@
|
||||||
import argparse
|
import argparse
|
||||||
import cv2
|
import cv2
|
||||||
|
import os
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
@ -8,9 +9,9 @@ import warnings
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# prepare the environment
|
# prepare the environment
|
||||||
# os.system("python setup.py build develop --user")
|
os.system("python setup.py build develop --user")
|
||||||
# os.system("pip install packaging==21.3")
|
os.system("pip install packaging==21.3")
|
||||||
# os.system("pip install gradio")
|
os.system("pip install gradio")
|
||||||
|
|
||||||
|
|
||||||
warnings.filterwarnings("ignore")
|
warnings.filterwarnings("ignore")
|
||||||
|
@ -20,9 +21,30 @@ import gradio as gr
|
||||||
from groundingdino.models import build_model
|
from groundingdino.models import build_model
|
||||||
from groundingdino.util.slconfig import SLConfig
|
from groundingdino.util.slconfig import SLConfig
|
||||||
from groundingdino.util.utils import clean_state_dict
|
from groundingdino.util.utils import clean_state_dict
|
||||||
from groundingdino.util.inference import annotate, load_image, predict, load_model
|
from groundingdino.util.inference import annotate, load_image, predict
|
||||||
import groundingdino.datasets.transforms as T
|
import groundingdino.datasets.transforms as T
|
||||||
|
|
||||||
|
from huggingface_hub import hf_hub_download
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Use this command for evaluate the Grounding DINO model
|
||||||
|
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
||||||
|
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
||||||
|
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
||||||
|
device = 'cuda'
|
||||||
|
|
||||||
|
def load_model_hf(model_config_path, repo_id, filename, device='cuda'):
|
||||||
|
args = SLConfig.fromfile(model_config_path)
|
||||||
|
model = build_model(args)
|
||||||
|
args.device = device
|
||||||
|
|
||||||
|
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
||||||
|
checkpoint = torch.load(cache_file, map_location=device)
|
||||||
|
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
||||||
|
print("Model loaded from {} \n => {}".format(cache_file, log))
|
||||||
|
_ = model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
def image_transform_grounding(init_image):
|
def image_transform_grounding(init_image):
|
||||||
transform = T.Compose([
|
transform = T.Compose([
|
||||||
|
@ -40,11 +62,7 @@ def image_transform_grounding_for_vis(init_image):
|
||||||
image, _ = transform(init_image, None) # 3, h, w
|
image, _ = transform(init_image, None) # 3, h, w
|
||||||
return image
|
return image
|
||||||
|
|
||||||
config_file = "groundingdino/config/GroundingDINO_SwinB_cfg.py"
|
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae, device)
|
||||||
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
|
||||||
ckpt_filenmae = "weights/groundingdino_swinb_cogcoor.pth"
|
|
||||||
|
|
||||||
model = load_model(config_file, ckpt_filenmae, device='cuda')
|
|
||||||
|
|
||||||
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
|
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
|
||||||
init_image = input_image.convert("RGB")
|
init_image = input_image.convert("RGB")
|
||||||
|
@ -52,7 +70,7 @@ def run_grounding(input_image, grounding_caption, box_threshold, text_threshold)
|
||||||
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
||||||
|
|
||||||
# run grounidng
|
# run grounidng
|
||||||
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cuda')
|
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device=device)
|
||||||
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
||||||
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue