update demo to 4.18.0 gradio version
parent
2b62f419c2
commit
66be972730
|
@ -1,22 +1,16 @@
|
||||||
import argparse
|
import argparse
|
||||||
from functools import partial
|
|
||||||
import cv2
|
import cv2
|
||||||
import requests
|
|
||||||
import os
|
|
||||||
from io import BytesIO
|
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
|
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
# prepare the environment
|
# prepare the environment
|
||||||
os.system("python setup.py build develop --user")
|
# os.system("python setup.py build develop --user")
|
||||||
os.system("pip install packaging==21.3")
|
# os.system("pip install packaging==21.3")
|
||||||
os.system("pip install gradio")
|
# os.system("pip install gradio")
|
||||||
|
|
||||||
|
|
||||||
warnings.filterwarnings("ignore")
|
warnings.filterwarnings("ignore")
|
||||||
|
@ -26,13 +20,12 @@ import gradio as gr
|
||||||
from groundingdino.models import build_model
|
from groundingdino.models import build_model
|
||||||
from groundingdino.util.slconfig import SLConfig
|
from groundingdino.util.slconfig import SLConfig
|
||||||
from groundingdino.util.utils import clean_state_dict
|
from groundingdino.util.utils import clean_state_dict
|
||||||
from groundingdino.util.inference import annotate, load_image, predict
|
from groundingdino.util.inference import annotate, load_image, predict, load_model
|
||||||
import groundingdino.datasets.transforms as T
|
import groundingdino.datasets.transforms as T
|
||||||
|
|
||||||
from huggingface_hub import hf_hub_download
|
from huggingface_hub import hf_hub_download
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Use this command for evaluate the Grounding DINO model
|
# Use this command for evaluate the Grounding DINO model
|
||||||
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
||||||
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
||||||
|
@ -71,13 +64,12 @@ model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
||||||
|
|
||||||
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
|
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
|
||||||
init_image = input_image.convert("RGB")
|
init_image = input_image.convert("RGB")
|
||||||
original_size = init_image.size
|
|
||||||
|
|
||||||
_, image_tensor = image_transform_grounding(init_image)
|
_, image_tensor = image_transform_grounding(init_image)
|
||||||
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
||||||
|
|
||||||
# run grounidng
|
# run grounidng
|
||||||
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu')
|
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cuda')
|
||||||
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
||||||
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
||||||
|
|
||||||
|
@ -98,9 +90,9 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
input_image = gr.Image(source='upload', type="pil")
|
input_image = gr.Image(label='upload', type="pil")
|
||||||
grounding_caption = gr.Textbox(label="Detection Prompt")
|
grounding_caption = gr.Textbox(label="Detection Prompt")
|
||||||
run_button = gr.Button(label="Run")
|
run_button = gr.Button(value="Run")
|
||||||
with gr.Accordion("Advanced options", open=False):
|
with gr.Accordion("Advanced options", open=False):
|
||||||
box_threshold = gr.Slider(
|
box_threshold = gr.Slider(
|
||||||
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
||||||
|
@ -110,10 +102,10 @@ if __name__ == "__main__":
|
||||||
)
|
)
|
||||||
|
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
gallery = gr.outputs.Image(
|
gallery = gr.components.Image(
|
||||||
type="pil",
|
label="grounding results",
|
||||||
# label="grounding results"
|
type="pil"
|
||||||
).style(full_width=True, full_height=True)
|
)
|
||||||
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
|
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
|
||||||
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
|
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
|
||||||
|
|
||||||
|
@ -122,4 +114,3 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
|
|
||||||
block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share)
|
block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue