README.md updates
parent
29cc3846fd
commit
78362b1ea3
34
README.md
34
README.md
|
@ -1,14 +1,21 @@
|
|||
# Grounding DINO
|
||||
|
||||
---
|
||||
|
||||
[](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb)
|
||||
|
||||
[](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) \
|
||||
[](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
|
||||
[](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) \
|
||||
[](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)
|
||||
|
||||
# Grounding DINO
|
||||
|
||||
|
||||
Official pytorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now!
|
||||
|
||||
|
||||
## Highlight
|
||||
|
||||
- **Open-Set Detection.** Detect **everything** with language!
|
||||
- **High Performancce.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**.
|
||||
- **Flexible.** Collaboration with Stable Diffusion for Image Editting.
|
||||
|
@ -23,21 +30,22 @@ Description
|
|||
<img src=".asset/hero_figure.png" alt="ODinW" width="100%">
|
||||
</details>
|
||||
|
||||
## TODO List
|
||||
## TODO
|
||||
|
||||
- [x] Release inference code and demo.
|
||||
- [x] Release checkpoints.
|
||||
- [ ] Grounding DINO with Stable Diffusion and GLIGEN demos.
|
||||
|
||||
## Install
|
||||
|
||||
## Usage
|
||||
### 1. Install
|
||||
If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set.
|
||||
|
||||
```bash
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
### 2. Run an inference demo
|
||||
## Demo
|
||||
|
||||
See the `demo/inference_on_a_image.py` for more details.
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=6 python demo/inference_on_a_image.py \
|
||||
|
@ -48,7 +56,8 @@ CUDA_VISIBLE_DEVICES=6 python demo/inference_on_a_image.py \
|
|||
-t "cat ear."
|
||||
```
|
||||
|
||||
### Checkpoints
|
||||
## Checkpoints
|
||||
|
||||
<!-- insert a table -->
|
||||
<table>
|
||||
<thead>
|
||||
|
@ -74,6 +83,7 @@ CUDA_VISIBLE_DEVICES=6 python demo/inference_on_a_image.py \
|
|||
</table>
|
||||
|
||||
## Results
|
||||
|
||||
<details open>
|
||||
<summary><font size="4">
|
||||
COCO Object Detection Results
|
||||
|
@ -102,11 +112,6 @@ Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</
|
|||
<img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
|
||||
</details>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## Model
|
||||
|
||||
Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
|
||||
|
@ -114,7 +119,8 @@ Includes: a text backbone, an image backbone, a feature enhancer, a language-gui
|
|||

|
||||
|
||||
|
||||
# Links
|
||||
## Acknowledgement
|
||||
|
||||
Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!
|
||||
|
||||
We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at [Awesome Detection Transformer](https://github.com/IDEACVR/awesome-detection-transformer). A new toolbox [detrex](https://github.com/IDEA-Research/detrex) is available as well.
|
||||
|
@ -122,8 +128,10 @@ We also thank great previous work including DETR, Deformable DETR, SMCA, Conditi
|
|||
Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.
|
||||
|
||||
|
||||
# Bibtex
|
||||
## Citation
|
||||
|
||||
If you find our work helpful for your research, please consider citing the following BibTeX entry.
|
||||
|
||||
```bibtex
|
||||
@inproceedings{ShilongLiu2023GroundingDM,
|
||||
title={Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection},
|
||||
|
|
Loading…
Reference in New Issue