move more code to inference utils

pull/9/head
SkalskiP 2023-03-23 16:51:08 +01:00
parent 15d578a549
commit ade670830e
2 changed files with 57 additions and 2 deletions

View File

@ -1,8 +1,14 @@
import torch
from typing import Tuple, List
import numpy as np
import torch
from PIL.Image import Image
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util.misc import clean_state_dict
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import get_phrases_from_posmap
def preprocess_caption(caption: str) -> str:
@ -12,7 +18,7 @@ def preprocess_caption(caption: str) -> str:
return result + "."
def load_model(model_config_path, model_checkpoint_path):
def load_model(model_config_path: str, model_checkpoint_path: str):
args = SLConfig.fromfile(model_config_path)
args.device = "cuda"
model = build_model(args)
@ -20,3 +26,51 @@ def load_model(model_config_path, model_checkpoint_path):
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
return model
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = Image.open(image_path).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def predict(
model,
image: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
caption = preprocess_caption(caption=caption)
model = model.cuda()
image = image.cuda()
with torch.no_grad():
outputs = model(image[None], captions=[caption])
pred_logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
pred_boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
mask = pred_logits.max(dim=1)[0] > box_threshold
logits = pred_logits[mask] # num_filt, 256
boxes = pred_boxes[mask] # num_filt, 4
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
phrases = [
get_phrases_from_posmap(logit > text_threshold, tokenized, caption).replace('.', '')
for logit
in logits
]
return boxes, logits.max(dim=1)[0], phrases

View File

@ -4,4 +4,5 @@ transformers
addict
yapf
timm
numpy
supervision==0.3.2