115 lines
3.1 KiB
Plaintext
115 lines
3.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"final text_encoder_type: bert-base-uncased\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"application/json": {
|
|
"ascii": false,
|
|
"bar_format": null,
|
|
"colour": null,
|
|
"elapsed": 0.014210224151611328,
|
|
"initial": 0,
|
|
"n": 0,
|
|
"ncols": null,
|
|
"nrows": null,
|
|
"postfix": null,
|
|
"prefix": "Downloading model.safetensors",
|
|
"rate": null,
|
|
"total": 440449768,
|
|
"unit": "B",
|
|
"unit_divisor": 1000,
|
|
"unit_scale": true
|
|
},
|
|
"application/vnd.jupyter.widget-view+json": {
|
|
"model_id": "5922f34578364d36afa13de9f01254bd",
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
},
|
|
"text/plain": [
|
|
"Downloading model.safetensors: 0%| | 0.00/440M [00:00<?, ?B/s]"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/root/miniconda3/lib/python3.8/site-packages/transformers/modeling_utils.py:881: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.\n",
|
|
" warnings.warn(\n",
|
|
"/root/miniconda3/lib/python3.8/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
|
" warnings.warn(\"None of the inputs have requires_grad=True. Gradients will be None\")\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"True"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from groundingdino.util.inference import load_model, load_image, predict, annotate\n",
|
|
"import cv2\n",
|
|
"\n",
|
|
"model = load_model(\"groundingdino/config/GroundingDINO_SwinT_OGC.py\", \"../04-06-segment-anything/weights/groundingdino_swint_ogc.pth\")\n",
|
|
"IMAGE_PATH = \".asset/cat_dog.jpeg\"\n",
|
|
"TEXT_PROMPT = \"chair . person . dog .\"\n",
|
|
"BOX_TRESHOLD = 0.35\n",
|
|
"TEXT_TRESHOLD = 0.25\n",
|
|
"\n",
|
|
"image_source, image = load_image(IMAGE_PATH)\n",
|
|
"\n",
|
|
"boxes, logits, phrases = predict(\n",
|
|
" model=model,\n",
|
|
" image=image,\n",
|
|
" caption=TEXT_PROMPT,\n",
|
|
" box_threshold=BOX_TRESHOLD,\n",
|
|
" text_threshold=TEXT_TRESHOLD\n",
|
|
")\n",
|
|
"\n",
|
|
"annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)\n",
|
|
"cv2.imwrite(\"annotated_image.jpg\", annotated_frame)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "base",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.10"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|