2023-10-07 23:20:40 +08:00
|
|
|
# Adapted from https://github.com/microsoft/GLIP. The original liscense is:
|
|
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
2023-10-07 23:02:26 +08:00
|
|
|
# Set up custom environment before nearly anything else is imported
|
|
|
|
# NOTE: this should be the first import (no not reorder)
|
|
|
|
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from maskrcnn_benchmark.config import cfg
|
|
|
|
from maskrcnn_benchmark.data import make_data_loader
|
|
|
|
from maskrcnn_benchmark.engine.inference import inference
|
|
|
|
from maskrcnn_benchmark.modeling.detector import build_detection_model
|
|
|
|
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
|
|
|
|
from maskrcnn_benchmark.utils.collect_env import collect_env_info
|
|
|
|
from maskrcnn_benchmark.utils.comm import synchronize, get_rank
|
|
|
|
from maskrcnn_benchmark.utils.logger import setup_logger
|
|
|
|
from maskrcnn_benchmark.utils.miscellaneous import mkdir
|
|
|
|
from maskrcnn_benchmark.utils.stats import get_model_complexity_info
|
|
|
|
|
|
|
|
|
|
|
|
def run_test(cfg, model, distributed, log_dir):
|
|
|
|
if distributed and hasattr(model, 'module'):
|
|
|
|
model = model.module
|
|
|
|
torch.cuda.empty_cache() # TODO check if it helps
|
|
|
|
iou_types = ("bbox",)
|
|
|
|
if cfg.MODEL.MASK_ON:
|
|
|
|
iou_types = iou_types + ("segm",)
|
|
|
|
if cfg.MODEL.KEYPOINT_ON:
|
|
|
|
iou_types = iou_types + ("keypoints",)
|
|
|
|
dataset_names = cfg.DATASETS.TEST
|
|
|
|
if isinstance(dataset_names[0], (list, tuple)):
|
|
|
|
dataset_names = [dataset for group in dataset_names for dataset in group]
|
|
|
|
output_folders = [None] * len(dataset_names)
|
|
|
|
if log_dir:
|
|
|
|
for idx, dataset_name in enumerate(dataset_names):
|
|
|
|
output_folder = os.path.join(log_dir, "inference", dataset_name)
|
|
|
|
mkdir(output_folder)
|
|
|
|
output_folders[idx] = output_folder
|
|
|
|
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
|
|
|
|
for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val):
|
|
|
|
inference(
|
|
|
|
model,
|
|
|
|
data_loader_val,
|
|
|
|
dataset_name=dataset_name,
|
|
|
|
iou_types=iou_types,
|
|
|
|
box_only=cfg.MODEL.RPN_ONLY and (cfg.MODEL.RPN_ARCHITECTURE=="RPN" or cfg.DATASETS.CLASS_AGNOSTIC),
|
|
|
|
device=cfg.MODEL.DEVICE,
|
|
|
|
expected_results=cfg.TEST.EXPECTED_RESULTS,
|
|
|
|
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
|
|
|
|
output_folder=output_folder,
|
|
|
|
cfg=cfg
|
|
|
|
)
|
|
|
|
synchronize()
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference")
|
|
|
|
parser.add_argument(
|
|
|
|
"--config-file",
|
|
|
|
default="/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml",
|
|
|
|
metavar="FILE",
|
|
|
|
help="path to config file",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--weight",
|
|
|
|
default=None,
|
|
|
|
metavar="FILE",
|
|
|
|
help="path to config file",
|
|
|
|
)
|
|
|
|
parser.add_argument("--local_rank", type=int, default=0)
|
|
|
|
parser.add_argument(
|
|
|
|
"opts",
|
|
|
|
help="Modify config options using the command-line",
|
|
|
|
default=None,
|
|
|
|
nargs=argparse.REMAINDER,
|
|
|
|
)
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
|
|
|
|
distributed = num_gpus > 1
|
|
|
|
|
|
|
|
if distributed:
|
|
|
|
torch.cuda.set_device(args.local_rank)
|
|
|
|
torch.distributed.init_process_group(
|
|
|
|
backend="nccl", init_method="env://"
|
|
|
|
)
|
|
|
|
|
|
|
|
cfg.local_rank = args.local_rank
|
|
|
|
cfg.num_gpus = num_gpus
|
|
|
|
|
|
|
|
cfg.merge_from_file(args.config_file)
|
|
|
|
cfg.merge_from_list(args.opts)
|
|
|
|
cfg.freeze()
|
|
|
|
|
|
|
|
log_dir = cfg.OUTPUT_DIR
|
|
|
|
if args.weight:
|
|
|
|
log_dir = os.path.join(log_dir, "eval", os.path.splitext(os.path.basename(args.weight))[0])
|
|
|
|
if log_dir:
|
|
|
|
mkdir(log_dir)
|
|
|
|
logger = setup_logger("maskrcnn_benchmark", log_dir, get_rank())
|
|
|
|
logger.info(args)
|
|
|
|
logger.info("Using {} GPUs".format(num_gpus))
|
|
|
|
logger.info(cfg)
|
|
|
|
|
|
|
|
logger.info("Collecting env info (might take some time)")
|
|
|
|
logger.info("\n" + collect_env_info())
|
|
|
|
|
|
|
|
model = build_detection_model(cfg)
|
|
|
|
model.to(cfg.MODEL.DEVICE)
|
|
|
|
|
|
|
|
params, flops = get_model_complexity_info(model,
|
|
|
|
(3, cfg.INPUT.MAX_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST),
|
|
|
|
input_constructor=lambda x: {'images': [torch.rand(x).cuda()]})
|
|
|
|
print("FLOPs: {}, #Parameter: {}".format(params, flops))
|
|
|
|
|
|
|
|
checkpointer = DetectronCheckpointer(cfg, model, save_dir=cfg.OUTPUT_DIR)
|
|
|
|
if args.weight:
|
|
|
|
_ = checkpointer.load(args.weight, force=True)
|
|
|
|
else:
|
|
|
|
_ = checkpointer.load(cfg.MODEL.WEIGHT)
|
|
|
|
|
|
|
|
run_test(cfg, model, distributed, log_dir)
|
|
|
|
logger.info("FLOPs: {}, #Parameter: {}".format(params, flops))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|