fix query extraction

old_version
YifanXu74 2023-07-19 11:32:09 +08:00
parent e154671cc7
commit e12a5f3bac
4 changed files with 1010 additions and 364 deletions

View File

@ -16,10 +16,10 @@ from .caption import CaptionTSV
from .lvis import LvisDetection
from .pseudo_data import PseudoData
from .phrasecut import PhrasecutDetection
# from .modulated_coco_new import CocoGrounding_New
from .modulated_coco_new import CocoGrounding_New
__all__ = ["COCODataset", "TSVDataset", "ODTSVDataset", "ConcatDataset", "PascalVOCDataset", "Background",
"ModulatedDataset", "MixedDataset", "CocoDetection", "FlickrDataset", "RefExpDataset", "GQADataset",
"CocoDetectionTSV", "CocoGrounding", "CaptionTSV", "LvisDetection", "PseudoData", "PhrasecutDetection",
# "CocoGrounding_New"
"CocoGrounding_New",
]

View File

@ -0,0 +1,721 @@
# Delete some ununsed functions from modulated_coco.
# Suit for object365 pre-training
import logging
import os
import os.path
import math
from PIL import Image, ImageDraw
import random
import numpy as np
import torch
import torchvision
import torch.utils.data as data
from pycocotools import mask as coco_mask
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
from maskrcnn_benchmark.data.datasets.coco import has_valid_annotation
from .od_to_grounding import convert_od_to_grounding_simple, check_for_positive_overflow, sanity_check_target_after_processing, convert_object_detection_to_grounding_optimized_for_od
import pdb
import json
from tqdm import tqdm
from groundingdino_new.util.inference import preprocess_caption
from groundingdino_new.util.box_ops import box_xyxy_to_cxcywh
import copy
def _has_only_crowd_bbox(anno):
return all(obj["iscrowd"] == 1 for obj in anno)
class CocoGrounding_New(torchvision.datasets.CocoDetection):
def __init__(self,
img_folder,
ann_file,
transforms,
return_masks,
return_tokens,
is_train=False,
tokenizer=None,
disable_shuffle=False,
add_detection_prompt=False,
add_detection_prompt_advanced=False,
control_probabilities={},
one_hot=False,
disable_clip_to_image=False,
no_minus_one_for_one_hot=False,
separation_tokens=" ",
few_shot=0,
no_mask_for_od=False,
override_category=None,
use_caption_prompt=False,
caption_prompt=None,
max_num_labels=-1,
max_query_len=256,
special_safeguard_for_coco_grounding=False,
random_sample_negative=-1,
cumtom_ids=None,
exclude_crowd=False,
sep_at_last = False,
add_normed_cxcy = False,
custom_category_ids=None,
**kwargs
):
super(CocoGrounding_New, self).__init__(img_folder, ann_file)
self.ids = sorted(self.ids)
self.sep_at_last = sep_at_last
self.add_normed_cxcy = add_normed_cxcy
self.iscrowd = False if exclude_crowd else None
ids = []
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=self.iscrowd)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=self.iscrowd)
anno = self.coco.loadAnns(ann_ids)
if has_valid_annotation(anno):
ids.append(img_id)
self.ids = ids
# self.ids = self.remove_invalid_images(self.ids)
if few_shot:
ids = []
# cats_freq = [few_shot]*len(self.coco.cats.keys())
cats_freq = [few_shot]*max(list(self.coco.cats.keys()))
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=self.iscrowd)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=self.iscrowd)
anno = self.coco.loadAnns(ann_ids)
cat = set([ann['category_id'] for ann in anno]) #set/tuple corresponde to instance/image level
is_needed = sum([cats_freq[c-1]>0 for c in cat])
if is_needed:
ids.append(img_id)
for c in cat:
cats_freq[c-1] -= 1
# print(cat, cats_freq)
self.ids = ids
if cumtom_ids is not None:
self.ids = cumtom_ids
if custom_category_ids is not None:
new_ids = []
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], catIds=custom_category_ids, iscrowd=self.iscrowd)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, catIds=custom_category_ids, iscrowd=self.iscrowd)
if len(ann_ids) > 0:
new_ids.append(img_id)
self.ids = new_ids
self.json_category_id_to_contiguous_id = {
v: i + 1 for i, v in enumerate(self.coco.getCatIds())
}
self.contiguous_category_id_to_json_id = {
v: k for k, v in self.json_category_id_to_contiguous_id.items()
}
if override_category is not None:
self.coco.dataset["categories"] = override_category
self.max_num_labels=max_num_labels
self.control_probabilities=control_probabilities
self.use_caption_prompt = use_caption_prompt
self.caption_prompt = caption_prompt
self.special_safeguard_for_coco_grounding = special_safeguard_for_coco_grounding
self.random_sample_negative = random_sample_negative
self.ind_to_class = self.categories(no_background=False)
self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
self._transforms = transforms
self.max_query_len = max_query_len
self.prepare = ConvertCocoPolysToMask(False, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len, ind_to_class=self.ind_to_class)
self.tokenizer = tokenizer
self.is_train = is_train
self.ind_to_class = self.categories(no_background=False)
self.disable_shuffle = disable_shuffle
self.add_detection_prompt = add_detection_prompt
self.add_detection_prompt_advanced=add_detection_prompt_advanced
self.one_hot = one_hot
self.no_minus_one_for_one_hot = no_minus_one_for_one_hot
self.disable_clip_to_image = disable_clip_to_image
self.separation_tokens = separation_tokens
self.no_mask_for_od = no_mask_for_od
self.return_masks = return_masks
def remove_invalid_images(self, ids):
print('removing non-exist images from dataset...')
new_ids=[]
invalid_num=0
for id in tqdm(ids):
path = self.coco.loadImgs(id)[0]["file_name"]
if os.path.exists(os.path.join(self.root, path)):
new_ids.append(id)
else:
invalid_num+=1
print('removed {} non-exist images from dataset'.format(invalid_num))
return new_ids
def categories(self, no_background=True):
categories = self.coco.dataset["categories"]
label_list = {}
for index, i in enumerate(categories):
# assert(index + 1 == i["id"])
if not no_background or (i["name"] != "__background__" and i['id'] != 0):
label_list[self.json_category_id_to_contiguous_id[i["id"]]] = i["name"]
return label_list
def get_box_mask(self, rect, img_size, mode="poly"):
assert mode=="poly", "Only support poly mask right now!"
x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
return [[x1, y1, x1, y2, x2, y2, x2, y1]]
def __getitem__(self, idx):
img, tgt = super(CocoGrounding_New, self).__getitem__(idx)
image_id = self.ids[idx]
tgt = [obj for obj in tgt if obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in tgt]
boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes
target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")
classes = [obj["category_id"] for obj in tgt]
classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
classes = torch.tensor(classes)
target.add_field("labels", classes)
if not self.disable_clip_to_image:
target = target.clip_to_image(remove_empty=True)
if self.special_safeguard_for_coco_grounding:
# Intended for LVIS and Object365
assert(not self.use_caption_prompt)
original_box_num = len(target)
target, positive_caption_length = check_for_positive_overflow(target, self.ind_to_class, self.tokenizer, self.max_query_len-2) # leave some space for the special tokens
if len(target) < original_box_num:
print("WARNING: removed {} boxes due to positive caption overflow".format(original_box_num - len(target)))
annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions = convert_object_detection_to_grounding_optimized_for_od(
target=target,
image_id=image_id,
ind_to_class=self.ind_to_class,
disable_shuffle=self.disable_shuffle,
add_detection_prompt=self.add_detection_prompt,
add_detection_prompt_advanced=self.add_detection_prompt_advanced,
random_sample_negative=self.random_sample_negative,
control_probabilities=self.control_probabilities, # always try to add a lot of negatives
restricted_negative_list=None,
separation_tokens=self.separation_tokens,
max_num_labels=self.max_num_labels,
positive_caption_length=positive_caption_length,
tokenizer=self.tokenizer,
max_seq_length=self.max_query_len-2,
obj356_debug=True
)
else:
# Intended for COCO / ODinW
annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions = convert_od_to_grounding_simple(
target=target,
image_id=image_id,
ind_to_class=self.ind_to_class,
disable_shuffle=self.disable_shuffle,
add_detection_prompt=self.add_detection_prompt,
separation_tokens=self.separation_tokens,
caption_prompt=self.caption_prompt if self.use_caption_prompt else None,
)
# if self.sep_at_last:
# caption = preprocess_caption(caption)
anno = {"image_id": image_id, "annotations": annotations, "caption": caption, "label_to_positions_caption": label_to_positions}
anno["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
if self.no_mask_for_od:
anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))
img, anno = self.prepare(img, anno, box_format="xyxy")
# for equivalence check
if self.one_hot:
logging.info("using one hot for equivalence check.")
one_hot_map = torch.zeros_like(anno["positive_map"], dtype=torch.float)
text_mask = torch.zeros(anno["positive_map"].shape[1], dtype=torch.int64)
# create one hot mapping
for ii, cls in enumerate(classes):
if self.no_minus_one_for_one_hot:
one_hot_map[ii, cls] = 1.0
else:
one_hot_map[ii, cls - 1] = 1.0
if self.no_minus_one_for_one_hot:
text_mask[:] = 1
else:
text_mask[:len(self.ind_to_class)] = 1
anno["positive_map"] = one_hot_map
anno["text_mask"] = text_mask
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in anno:
target.add_field(ann, anno[ann])
if self.add_normed_cxcy:
bbox = target.bbox
H, W = target.size
normed_bbox = bbox / torch.Tensor([[H,W,H,W]])
normed_cxcy = box_xyxy_to_cxcywh(normed_bbox)
target.add_field('normed_cxcy_boxes', normed_cxcy)
sanity_check_target_after_processing(target)
return img, target, idx
def get_img_info(self, index):
img_id = self.id_to_img_map[index]
img_data = self.coco.imgs[img_id]
return img_data
def get_raw_image(self, idx):
image, *_ = super(CocoGrounding_New, self).__getitem__(idx)
return image
class ModulatedDataset(torchvision.datasets.CocoDetection):
def __init__(self,
img_folder,
ann_file,
transforms,
return_masks,
return_tokens,
is_train=False,
tokenizer=None,
disable_clip_to_image=False,
no_mask_for_gold=False,
max_query_len=256,
**kwargs):
super(ModulatedDataset, self).__init__(img_folder, ann_file)
self.ids = sorted(self.ids)
ids = []
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = self.coco.loadAnns(ann_ids)
if has_valid_annotation(anno):
ids.append(img_id)
self.ids = ids
self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
self._transforms = transforms
self.max_query_len = max_query_len
self.prepare = ConvertCocoPolysToMask(return_masks, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len)
self.is_train = is_train
self.disable_clip_to_image = disable_clip_to_image
self.no_mask_for_gold = no_mask_for_gold
def __getitem__(self, idx):
img, target = super(ModulatedDataset, self).__getitem__(idx)
image_id = self.ids[idx]
coco_img = self.coco.loadImgs(image_id)[0]
caption = coco_img["caption"]
dataset_name = coco_img["dataset_name"] if "dataset_name" in coco_img else None
anno = {"image_id": image_id, "annotations": target, "caption": caption}
# This dataset is used for Flickr & Mixed, so the sequence is maskable
anno["greenlight_span_for_masked_lm_objective"] = [(0, len(caption))]
if self.no_mask_for_gold:
anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))
img, anno = self.prepare(img, anno)
# convert to BoxList (bboxes, labels)
boxes = torch.as_tensor(anno["boxes"]).reshape(-1, 4) # guard against no boxes
target = BoxList(boxes, img.size, mode="xyxy")
classes = anno["labels"]
target.add_field("labels", classes)
if self.prepare.return_masks:
target.add_field("masks", anno.pop("masks"))
target.add_field("is_box_mask", anno.pop("is_box_mask"))
if not self.disable_clip_to_image:
num_boxes = len(target.bbox)
target = target.clip_to_image(remove_empty=True)
assert num_boxes == len(target.bbox), "Box got removed in MixedDataset!!!"
# Check if bboxes are correct
# draw = ImageDraw.Draw(img)
# boxes = target.bbox
# for box in boxes:
# draw.rectangle([box[0], box[1], box[2], box[3]])
# img.save('OUTPUT/images/{}.jpg'.format(idx))
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in anno:
target.add_field(ann, anno[ann])
target.add_field("dataset_name", dataset_name)
for extra_key in ["sentence_id", "original_img_id", "original_id", "task_id"]:
if extra_key in coco_img:
target.add_field(extra_key, coco_img[extra_key])
if "tokens_positive_eval" in coco_img and not self.is_train:
tokenized = self.prepare.tokenizer(caption, return_tensors="pt")
target.add_field("positive_map_eval", create_positive_map(tokenized, coco_img["tokens_positive_eval"]))
target.add_field("nb_eval", len(target.get_field("positive_map_eval")))
sanity_check_target_after_processing(target)
return img, target, idx
def get_img_info(self, index):
img_id = self.id_to_img_map[index]
img_data = self.coco.imgs[img_id]
return img_data
class CocoDetection(data.Dataset):
"""`MS Coco Detection <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset.
Args:
root (string): Root directory where images are downloaded to.
annFile (string): Path to json annotation file.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
"""
def __init__(self, root, annFile, transform=None, target_transform=None):
from pycocotools.coco import COCO
self.root = root
self.coco = COCO(annFile)
self.ids = list(self.coco.imgs.keys())
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index, return_meta=False):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``.
"""
coco = self.coco
img_id = self.ids[index]
if isinstance(img_id, str):
img_id = [img_id]
ann_ids = coco.getAnnIds(imgIds=img_id)
target = coco.loadAnns(ann_ids)
meta = coco.loadImgs(img_id)[0]
path = meta['file_name']
img = pil_loader(os.path.join(self.root, path))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
if return_meta:
return img, target, meta
else:
return img, target
def __len__(self):
return len(self.ids)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
class ConvertCocoPolysToMask(object):
def __init__(self, return_masks=False, return_tokens=False, tokenizer=None, max_query_len=256, ind_to_class=None):
self.return_masks = return_masks
self.return_tokens = return_tokens
self.tokenizer = tokenizer
self.max_query_len = max_query_len
self.ind_to_class=ind_to_class
def get_box_mask(self, rect, img_size, mode="poly"):
assert mode=="poly", "Only support poly mask right now!"
x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
return [[x1, y1, x1, y2, x2, y2, x2, y1]]
def __call__(self, image, target, ignore_box_screen=False, box_format="xywh"):
w, h = image.size
image_id = target["image_id"]
image_id = torch.tensor([image_id])
anno = target["annotations"]
caption = target["caption"] if "caption" in target else None
label_to_positions = target.get("label_to_positions", {})
label_to_positions_caption = target.get("label_to_positions_caption", {})
greenlight_span_for_masked_lm_objective = target.get("greenlight_span_for_masked_lm_objective", None)
anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
# guard against no boxes via resizing
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
if box_format == "xywh":
boxes[:, 2:] += boxes[:, :2] - 1 # TO_REMOVE = 1
boxes[:, 0::2].clamp_(min=0, max=w-1) # TO_REMOVE = 1
boxes[:, 1::2].clamp_(min=0, max=h-1) # TO_REMOVE = 1
classes = [obj["category_id"] for obj in anno]
classes = torch.tensor(classes, dtype=torch.int64)
if self.return_masks:
masks = []
is_box_mask = []
for obj, bbox in zip(anno, boxes):
if "segmentation" in obj:
masks.append(obj["segmentation"])
is_box_mask.append(0)
else:
masks.append(self.get_box_mask(bbox, image.size, mode='poly'))
is_box_mask.append(1)
masks = SegmentationMask(masks, image.size, mode='poly')
is_box_mask = torch.tensor(is_box_mask)
keypoints = None
if anno and "keypoints" in anno[0]:
keypoints = [obj["keypoints"] for obj in anno]
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.view(num_keypoints, -1, 3)
isfinal = None
if anno and "isfinal" in anno[0]:
isfinal = torch.as_tensor([obj["isfinal"] for obj in anno], dtype=torch.float)
tokens_positive = [] if self.return_tokens else None
if self.return_tokens and anno and "tokens" in anno[0]:
tokens_positive = [obj["tokens"] for obj in anno]
elif self.return_tokens and anno and "tokens_positive" in anno[0]:
tokens_positive = [obj["tokens_positive"] for obj in anno]
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
classes = classes[keep]
if self.return_masks:
masks = masks[keep]
is_box_mask = is_box_mask[keep]
if keypoints is not None:
keypoints = keypoints[keep]
target = {}
target["boxes"] = boxes
target["labels"] = classes
if caption is not None:
target["caption"] = caption
if self.return_masks:
target["masks"] = masks
target["is_box_mask"] = is_box_mask
target["image_id"] = image_id
if keypoints is not None:
target["keypoints"] = keypoints
if tokens_positive is not None:
target["tokens_positive"] = []
for i, k in enumerate(keep):
if k or ignore_box_screen:
target["tokens_positive"].append(tokens_positive[i])
if isfinal is not None:
target["isfinal"] = isfinal
# for conversion to coco api
area = torch.tensor([obj["area"] for obj in anno])
iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
target["area"] = area[keep]
target["iscrowd"] = iscrowd[keep]
target["orig_size"] = torch.as_tensor([int(h), int(w)])
target["size"] = torch.as_tensor([int(h), int(w)])
if self.return_tokens and self.tokenizer is not None:
if not ignore_box_screen:
assert len(target["boxes"]) == len(target["tokens_positive"])
tokenized = self.tokenizer(caption, return_tensors="pt",
max_length=self.max_query_len,
truncation=True)
target["positive_map"] = create_positive_map(tokenized, target["tokens_positive"])
# target['greenlight_map'] = create_greenlight_map(greenlight_span_for_masked_lm_objective,tokenized)
# target["positive_map_for_od_labels"] = create_positive_map_for_od_labels(tokenized, label_to_positions)
all_tokens = [[v] for k,v in label_to_positions_caption.items()]
target["all_map"] = create_positive_map(tokenized, all_tokens)
target["labels_in_caption"]=[k for k,v in label_to_positions_caption.items()]
pos_label_set=list(set(target['labels'].tolist()))
pos_category_tokens = [[v] for k,v in label_to_positions_caption.items() if k in pos_label_set]
target["positive_category_map"] = create_positive_map(tokenized, pos_category_tokens)
target["positive_category_map"][target["positive_category_map"]!=0]=1
original_od_label = []
for obj in anno:
original_od_label.append(
obj.get("original_od_label", -10)) # NOTE: The padding value has to be not the same as -1 or -100
target["original_od_label"] = torch.as_tensor(original_od_label)
return image, target
def create_greenlight_map(tok_list, tokenized):
# An example tok_list:
# [(0, 5), (10, 13), (-1, -1, -1)]
# The last one is a special indicator..
greenlight_map = torch.zeros(256, dtype=torch.float)
for item in tok_list:
if len(item) != 2:
assert(len(item) == 3)
# Make everything unmakable
greenlight_map[:] = -1
break
beg, end = item
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
greenlight_map[beg_pos: end_pos + 1].fill_(1)
return greenlight_map
def create_positive_map_for_od_labels(tokenized, label_to_positions):
"""construct a map such that positive_map[i] = j, where j is the object detection label of the token i"""
"""
{3: [1: 5)}
256 : -1 3 3 3 3 -1 .. 8 8 ..
the woman in the garden
-1 -1 -1 -1 -1
"""
positive_map = torch.ones(256, dtype=torch.float) * -1 # -1 means no match
keys = list(label_to_positions.keys())
for j, key in enumerate(keys):
tok_list = label_to_positions[key]
# one label only mapps to one location
beg, end = tok_list
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[beg_pos: end_pos + 1].fill_(key)
return positive_map
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
def create_positive_map(tokenized, tokens_positive):
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)
for j, tok_list in enumerate(tokens_positive):
for (beg, end) in tok_list:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[j, beg_pos: end_pos + 1].fill_(1)
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
def pil_loader(path, retry=5):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
ri = 0
while ri < retry:
try:
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
except:
ri += 1

View File

@ -1,362 +0,0 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import logging
import sys
import os
import math
import time
import torch
import torch.distributed as dist
from maskrcnn_benchmark.utils.comm import get_world_size, all_gather, is_main_process, broadcast_data, get_rank
from maskrcnn_benchmark.utils.metric_logger import MetricLogger
from maskrcnn_benchmark.utils.ema import ModelEma
from maskrcnn_benchmark.utils.amp import autocast, GradScaler
from maskrcnn_benchmark.data.datasets.evaluation import evaluate
from .inference import inference
import pdb
def reduce_loss_dict(loss_dict):
"""
Reduce the loss dictionary from all processes so that process with rank
0 has the averaged results. Returns a dict with the same fields as
loss_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return loss_dict
with torch.no_grad():
loss_names = []
all_losses = []
for k in sorted(loss_dict.keys()):
loss_names.append(k)
all_losses.append(loss_dict[k])
all_losses = torch.stack(all_losses, dim=0)
dist.reduce(all_losses, dst=0)
if dist.get_rank() == 0:
# only main process gets accumulated, so only divide by
# world_size in this case
all_losses /= world_size
reduced_losses = {k: v for k, v in zip(loss_names, all_losses)}
return reduced_losses
def do_train(
cfg,
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
val_data_loader=None,
meters=None,
zero_shot=False,
):
logger = logging.getLogger("maskrcnn_benchmark.trainer")
logger.info("Start training")
# meters = MetricLogger(delimiter=" ")
max_iter = len(data_loader)
start_iter = arguments["iteration"]
model.train()
model_ema = None
if cfg.SOLVER.MODEL_EMA > 0:
model_ema = ModelEma(model, decay=cfg.SOLVER.MODEL_EMA)
start_training_time = time.time()
end = time.time()
if cfg.SOLVER.USE_AMP:
scaler = GradScaler()
global_rank = get_rank()
if cfg.SOLVER.CHECKPOINT_PER_EPOCH != -1 and cfg.SOLVER.MAX_EPOCH >= 1:
checkpoint_period = len(data_loader) // cfg.SOLVER.CHECKPOINT_PER_EPOCH // cfg.SOLVER.MAX_EPOCH
if global_rank <= 0 and cfg.SOLVER.MAX_EPOCH >= 1:
print("Iter per epoch ", len(data_loader) // cfg.SOLVER.MAX_EPOCH )
if cfg.SOLVER.AUTO_TERMINATE_PATIENCE != -1:
patience_counter = 0
previous_best = 0.0
# Adapt the weight decay
if cfg.SOLVER.WEIGHT_DECAY_SCHEDULE and hasattr(scheduler, 'milestones'):
milestone_target = 0
for i, milstone in enumerate(list(scheduler.milestones)):
if scheduler.last_epoch >= milstone * cfg.SOLVER.WEIGHT_DECAY_SCHEDULE_RATIO:
milestone_target = i+1
for iteration, (images, targets, idxs, positive_map, positive_map_eval, greenlight_map) in enumerate(data_loader, start_iter):
nnegative = sum(len(target) < 1 for target in targets)
nsample = len(targets)
if nsample == nnegative or nnegative > nsample * cfg.SOLVER.MAX_NEG_PER_BATCH:
logger.info('[WARNING] Sampled {} negative in {} in a batch, greater the allowed ratio {}, skip'.
format(nnegative, nsample, cfg.SOLVER.MAX_NEG_PER_BATCH))
continue
data_time = time.time() - end
iteration = iteration + 1
arguments["iteration"] = iteration
images = images.to(device)
captions = None
try:
targets = [target.to(device) for target in targets]
captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
except:
pass
# Freeze language backbone
if cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
if hasattr(model, "module"):
model.module.language_backbone.eval()
else:
model.language_backbone.eval()
if cfg.SOLVER.USE_AMP:
with autocast():
if len(captions) > 0:
loss_dict = model(images, targets, captions=captions, positive_map=positive_map, greenlight_map = greenlight_map)
else:
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# save checkpoints for further debug if nan happens
# loss_value = losses.item()
# if not math.isfinite(loss_value):
# logging.error(f'=> loss is {loss_value}, stopping training')
# logging.error("Losses are : {}".format(loss_dict))
# time_str = time.strftime('%Y-%m-%d-%H-%M')
# fname = os.path.join(checkpointer.save_dir, f'{time_str}_states.pth')
# logging.info(f'=> save error state to {fname}')
# dict_to_save = {
# 'x': images,
# 'y': targets,
# 'loss': losses,
# 'states': model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
# }
# if len(captions) > 0:
# dict_to_save['captions'] = captions
# dict_to_save['positive_map'] = positive_map
# torch.save(
# dict_to_save,
# fname
# )
if torch.isnan(losses) or torch.isinf(losses):
logging.error("NaN encountered, ignoring")
losses[losses != losses] = 0
optimizer.zero_grad()
scaler.scale(losses).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
else:
if len(captions) > 0:
loss_dict = model(images, targets, captions, positive_map)
else:
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# loss_value = losses.item()
# if not math.isfinite(loss_value):
# logging.error(f'=> loss is {loss_value}, stopping training')
# time_str = time.strftime('%Y-%m-%d-%H-%M')
# fname = os.path.join(checkpointer.save_dir, f'{time_str}_states.pth')
# logging.info(f'=> save error state to {fname}')
# dict_to_save = {
# 'x': images,
# 'y': targets,
# 'loss': losses,
# 'states': model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
# }
# if len(captions) > 0:
# dict_to_save['captions'] = captions
# dict_to_save['positive_map'] = positive_map
# torch.save(
# dict_to_save,
# fname
# )
if torch.isnan(losses) or torch.isinf(losses):
losses[losses != losses] = 0
optimizer.zero_grad()
losses.backward()
optimizer.step()
scheduler.step()
# Adapt the weight decay: only support multiStepLR
if cfg.SOLVER.WEIGHT_DECAY_SCHEDULE and hasattr(scheduler, 'milestones'):
if milestone_target < len(scheduler.milestones):
next_milestone = list(scheduler.milestones)[milestone_target]
else:
next_milestone = float('inf')
if scheduler.last_epoch >= next_milestone * cfg.SOLVER.WEIGHT_DECAY_SCHEDULE_RATIO:
gamma = scheduler.gamma
logger.info("Drop the weight decay by {}!".format(gamma))
for param in optimizer.param_groups:
if 'weight_decay' in param:
param['weight_decay'] *= gamma
# move the target forward
milestone_target += 1
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = reduce_loss_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
meters.update(loss=losses_reduced, **loss_dict_reduced)
if model_ema is not None:
model_ema.update(model)
arguments["model_ema"] = model_ema.state_dict()
batch_time = time.time() - end
end = time.time()
meters.update(time=batch_time, data=data_time)
eta_seconds = meters.time.global_avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if iteration % 20 == 0 or iteration == max_iter:
# if iteration % 1 == 0 or iteration == max_iter:
#logger.info(
if global_rank <= 0:
print(
meters.delimiter.join(
[
"eta: {eta}",
"iter: {iter}",
"{meters}",
"lr: {lr:.6f}",
"wd: {wd:.6f}",
"max mem: {memory:.0f}",
]
).format(
eta=eta_string,
iter=iteration,
meters=str(meters),
lr=optimizer.param_groups[0]["lr"],
wd=optimizer.param_groups[0]["weight_decay"],
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
if val_data_loader and (iteration % checkpoint_period == 0 or iteration == max_iter):
if is_main_process():
print("Evaluating")
eval_result = 0.0
model.eval()
if cfg.SOLVER.TEST_WITH_INFERENCE:
with torch.no_grad():
try:
_model = model.module
except:
_model = model
_result = inference(
model = _model,
data_loader = val_data_loader,
dataset_name="val",
device=device,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=None,
cfg=cfg,
verbose=False,
disable_print=True
)
if is_main_process():
eval_result = _result[0].results['bbox']['AP']
else:
results_dict = {}
cpu_device = torch.device("cpu")
for i, batch in enumerate(val_data_loader):
images, targets, image_ids, positive_map, *_ = batch
with torch.no_grad():
images = images.to(device)
if positive_map is None:
output = model(images)
else:
captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
output = model(images, captions, positive_map)
output = [o.to(cpu_device) for o in output]
results_dict.update(
{img_id: result for img_id, result in zip(image_ids, output)}
)
all_predictions = all_gather(results_dict)
if is_main_process():
predictions = {}
for p in all_predictions:
predictions.update(p)
predictions = [predictions[i] for i in list(sorted(predictions.keys()))]
eval_result, _ = evaluate(val_data_loader.dataset, predictions, output_folder=None,
box_only=cfg.DATASETS.CLASS_AGNOSTIC)
if cfg.DATASETS.CLASS_AGNOSTIC:
eval_result = eval_result.results['box_proposal']['AR@100']
else:
eval_result = eval_result.results['bbox']['AP']
model.train()
if model_ema is not None and cfg.SOLVER.USE_EMA_FOR_MONITOR:
model_ema.ema.eval()
results_dict = {}
cpu_device = torch.device("cpu")
for i, batch in enumerate(val_data_loader):
images, targets, image_ids, positive_map, positive_map_eval = batch
with torch.no_grad():
images = images.to(device)
if positive_map is None:
output = model_ema.ema(images)
else:
captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
output = model_ema.ema(images, captions, positive_map)
output = [o.to(cpu_device) for o in output]
results_dict.update(
{img_id: result for img_id, result in zip(image_ids, output)}
)
all_predictions = all_gather(results_dict)
if is_main_process():
predictions = {}
for p in all_predictions:
predictions.update(p)
predictions = [predictions[i] for i in list(sorted(predictions.keys()))]
eval_result, _ = evaluate(val_data_loader.dataset, predictions, output_folder=None,
box_only=cfg.DATASETS.CLASS_AGNOSTIC)
if cfg.DATASETS.CLASS_AGNOSTIC:
eval_result = eval_result.results['box_proposal']['AR@100']
else:
eval_result = eval_result.results['bbox']['AP']
arguments.update(eval_result=eval_result)
if cfg.SOLVER.USE_AUTOSTEP:
eval_result = all_gather(eval_result)[0] #broadcast_data([eval_result])[0]
# print("Rank {} eval result gathered".format(cfg.local_rank), eval_result)
scheduler.step(eval_result)
if cfg.SOLVER.AUTO_TERMINATE_PATIENCE != -1:
if eval_result < previous_best:
patience_counter += 1
else:
patience_counter = 0
previous_best = eval_result
checkpointer.save("model_best", **arguments)
print("Previous Best", previous_best, "Patience Counter", patience_counter, "Eval Result", eval_result)
if patience_counter >= cfg.SOLVER.AUTO_TERMINATE_PATIENCE:
if is_main_process():
print("\n\n\n\nAuto Termination at {}, current best {}\n\n\n".format(iteration, previous_best))
break
if iteration % checkpoint_period == 0:
checkpointer.save("model_{:07d}".format(iteration), **arguments)
if iteration == max_iter:
checkpointer.save("model_final", **arguments)
break
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info(
"Total training time: {} ({:.4f} s / it)".format(
total_time_str, total_training_time / (max_iter)
)
)

287
tools/train_net.py 100644
View File

@ -0,0 +1,287 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
r"""
Basic training script for PyTorch
"""
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import numpy as np
import torch
from maskrcnn_benchmark.config import cfg, try_to_find
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.solver import make_lr_scheduler
from maskrcnn_benchmark.solver import make_optimizer
from maskrcnn_benchmark.engine.inference import inference
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process, all_gather
from maskrcnn_benchmark.utils.imports import import_file
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.metric_logger import (MetricLogger, TensorboardLogger)
from maskrcnn_benchmark.utils.miscellaneous import mkdir, save_config
import random
from maskrcnn_benchmark.utils.amp import autocast, GradScaler
from pathlib import Path
from tqdm import tqdm
from collections import defaultdict
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
def tuning_highlevel_override(cfg,):
if cfg.SOLVER.TUNING_HIGHLEVEL_OVERRIDE == "vision_query":
cfg.MODEL.BACKBONE.FREEZE = True
cfg.MODEL.FPN.FREEZE = True
cfg.MODEL.RPN.FREEZE = True if not cfg.VISION_QUERY.QUERY_FUSION else False
cfg.MODEL.LINEAR_PROB = False
cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER = False
cfg.MODEL.LANGUAGE_BACKBONE.FREEZE = False
cfg.MODEL.DYHEAD.USE_CHECKPOINT = False # Disable checkpoint
cfg.VISION_QUERY.ENABLED = True
if cfg.SOLVER.TUNING_HIGHLEVEL_OVERRIDE == "vs_with_txt_enc":
cfg.MODEL.BACKBONE.FREEZE = True
cfg.MODEL.FPN.FREEZE = True
cfg.MODEL.RPN.FREEZE = True if not cfg.VISION_QUERY.QUERY_FUSION else False
cfg.MODEL.LINEAR_PROB = False
cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER = False
cfg.MODEL.LANGUAGE_BACKBONE.FREEZE = False
cfg.MODEL.DYHEAD.USE_CHECKPOINT = False # Disable checkpoint
cfg.VISION_QUERY.ENABLED = True
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def extract_query(cfg):
if cfg.DATASETS.FEW_SHOT:
assert cfg.DATASETS.FEW_SHOT == cfg.VISION_QUERY.MAX_QUERY_NUMBER, 'To extract the right query instances, set VISION_QUERY.MAX_QUERY_NUMBER = DATASETS.FEW_SHOT.'
# if cfg.num_gpus > 1:
# max_query_number = cfg.VISION_QUERY.MAX_QUERY_NUMBER
# cfg.defrost()
# cfg.VISION_QUERY.MAX_QUERY_NUMBER = int(cfg.VISION_QUERY.MAX_QUERY_NUMBER/cfg.num_gpus)
# cfg.freeze()
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
checkpointer = DetectronCheckpointer(
cfg, model
)
checkpointer.load(try_to_find(cfg.MODEL.WEIGHT))
data_loader = make_data_loader(
cfg,
is_train=False,
is_cache=True,
is_distributed= cfg.num_gpus > 1,
)
assert isinstance(data_loader, list) and len(data_loader)==1
data_loader=data_loader[0]
# if cfg.VISION_QUERY.CUSTOM_DATA_IDS is not None:
# data_loader.dataset.ids = cfg.VISION_QUERY.CUSTOM_DATA_IDS
if cfg.num_gpus > 1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[cfg.local_rank], output_device=cfg.local_rank,
broadcast_buffers=cfg.MODEL.BACKBONE.USE_BN,
find_unused_parameters=cfg.SOLVER.FIND_UNUSED_PARAMETERS
)
query_images=defaultdict(list)
_iterator = tqdm(data_loader)
# _iterator = data_loader # for debug
model.eval()
for i, batch in enumerate(_iterator):
images, targets, *_ = batch
if cfg.num_gpus > 1:
query_images = model.module.extract_query(images.to(device), targets, query_images)
else:
query_images = model.extract_query(images.to(device), targets, query_images)
if cfg.num_gpus > 1:
## not stable when using all_gather, easy to OOM.
# all_query_images = all_gather(query_images)
# if is_main_process():
# accumulated_query_images = defaultdict(list)
# for r, query_images_dict in enumerate(all_query_images):
# print('accumulating results: {}/{}'.format(r, len(all_query_images)))
# for label, feat in query_images_dict.items():
# num_queries=len(accumulated_query_images[label])
# if num_queries >= cfg.VISION_QUERY.MAX_QUERY_NUMBER:
# continue
# if num_queries==0:
# accumulated_query_images[label] = feat.to(device)
# else:
# accumulated_query_images[label] = torch.cat([accumulated_query_images[label].to(device), feat.to(device)])
# save_name = 'MODEL/{}_query_{}_pool{}_{}{}_multi-node.pth'.format(cfg.VISION_QUERY.DATASET_NAME if cfg.VISION_QUERY.DATASET_NAME else cfg.DATASETS.TRAIN[0].split('_')[0] , cfg.VISION_QUERY.MAX_QUERY_NUMBER, cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION ,'sel' if cfg.VISION_QUERY.SELECT_FPN_LEVEL else 'all', cfg.VISION_QUERY.QUERY_ADDITION_NAME)
# print('saving to ', save_name)
# torch.save(accumulated_query_images, save_name)
if cfg.VISION_QUERY.QUERY_BANK_SAVE_PATH != '':
raise NotImplementedError
global_rank = get_rank()
save_name = 'MODEL/{}_query_{}_pool{}_{}{}_rank{}.pth'.format(cfg.VISION_QUERY.DATASET_NAME if cfg.VISION_QUERY.DATASET_NAME else cfg.DATASETS.TRAIN[0].split('_')[0] , cfg.VISION_QUERY.MAX_QUERY_NUMBER, cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION ,'sel' if cfg.VISION_QUERY.SELECT_FPN_LEVEL else 'all', cfg.VISION_QUERY.QUERY_ADDITION_NAME, global_rank)
print('saving to ', save_name)
torch.save(query_images, save_name)
else:
if cfg.VISION_QUERY.QUERY_BANK_SAVE_PATH != '':
save_name = cfg.VISION_QUERY.QUERY_BANK_SAVE_PATH
else:
save_name = 'MODEL/{}_query_{}_pool{}_{}{}.pth'.format(cfg.VISION_QUERY.DATASET_NAME if cfg.VISION_QUERY.DATASET_NAME else cfg.DATASETS.TRAIN[0].split('_')[0] , cfg.VISION_QUERY.MAX_QUERY_NUMBER, cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION ,'sel' if cfg.VISION_QUERY.SELECT_FPN_LEVEL else 'all', cfg.VISION_QUERY.QUERY_ADDITION_NAME)
print('saving to ', save_name)
torch.save(query_images, save_name)
# if cfg.num_gpus > 1:
# #
# world_size = torch.distributed.dist.get_world_size()
# if is_main_process():
# query_images_list = []
# for r in range(world_size):
# saved_path = 'MODEL/{}_query_{}_pool{}_{}{}_rank{}.pth'.format(cfg.VISION_QUERY.DATASET_NAME if cfg.VISION_QUERY.DATASET_NAME else cfg.DATASETS.TRAIN[0].split('_')[0] , cfg.VISION_QUERY.MAX_QUERY_NUMBER, cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION ,'sel' if cfg.VISION_QUERY.SELECT_FPN_LEVEL else 'all', cfg.VISION_QUERY.QUERY_ADDITION_NAME, r)
# query_images_list.append(torch.load(saved_path, map_location='cpu'))
# for s in query_images_list
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument("--use-tensorboard",
dest="use_tensorboard",
help="Use tensorboardX logger (Requires tensorboardX installed)",
action="store_true",
default=False
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument("--save_original_config", action="store_true")
parser.add_argument("--disable_output_distributed", action="store_true")
parser.add_argument("--override_output_dir", default=None)
parser.add_argument("--custom_shot_and_epoch_and_general_copy", default=None, type=str)
parser.add_argument("--resume", action="store_true", default=False)
parser.add_argument("--extract_query", action="store_true", default=False)
parser.add_argument(
"--task_config",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"--additional_model_config",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
import datetime
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://",
timeout=datetime.timedelta(0, 7200)
)
if args.disable_output_distributed:
setup_for_distributed(args.local_rank <= 0)
cfg.local_rank = args.local_rank
cfg.num_gpus = num_gpus
cfg.merge_from_file(args.config_file)
if args.task_config:
cfg.merge_from_file(args.task_config)
if args.additional_model_config:
cfg.merge_from_file(args.additional_model_config)
cfg.merge_from_list(args.opts)
# specify output dir for models
if args.override_output_dir:
cfg.OUTPUT_DIR = args.override_output_dir
tuning_highlevel_override(cfg)
cfg.freeze()
seed = cfg.SOLVER.SEED + args.local_rank
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info(args)
logger.info("Using {} GPUs".format(num_gpus))
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
output_config_path = os.path.join(cfg.OUTPUT_DIR, 'config.yml')
logger.info("Saving config into: {}".format(output_config_path))
# save overloaded model config in the output directory
if args.save_original_config:
import shutil
shutil.copy(args.config_file, os.path.join(cfg.OUTPUT_DIR, 'config_original.yml'))
save_config(cfg, output_config_path)
if args.extract_query:
extract_query(cfg)
else:
raise NotImplementedError
if __name__ == "__main__":
main()