mirror of https://github.com/YifanXu74/MQ-Det.git
210 lines
8.2 KiB
Plaintext
210 lines
8.2 KiB
Plaintext
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
|
|
// #include <THC/THC.h>
|
|
#include <ATen/ceil_div.h>
|
|
#include <THC/THCAtomics.cuh>
|
|
#include <THC/THCDeviceUtils.cuh>
|
|
|
|
|
|
// TODO make it in a common file
|
|
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
|
|
i += blockDim.x * gridDim.x)
|
|
|
|
|
|
template <typename T>
|
|
__global__ void RoIPoolFForward(const int nthreads, const T* bottom_data,
|
|
const T spatial_scale, const int channels, const int height,
|
|
const int width, const int pooled_height, const int pooled_width,
|
|
const T* bottom_rois, T* top_data, int* argmax_data) {
|
|
CUDA_1D_KERNEL_LOOP(index, nthreads) {
|
|
// (n, c, ph, pw) is an element in the pooled output
|
|
int pw = index % pooled_width;
|
|
int ph = (index / pooled_width) % pooled_height;
|
|
int c = (index / pooled_width / pooled_height) % channels;
|
|
int n = index / pooled_width / pooled_height / channels;
|
|
|
|
const T* offset_bottom_rois = bottom_rois + n * 5;
|
|
int roi_batch_ind = offset_bottom_rois[0];
|
|
int roi_start_w = round(offset_bottom_rois[1] * spatial_scale);
|
|
int roi_start_h = round(offset_bottom_rois[2] * spatial_scale);
|
|
int roi_end_w = round(offset_bottom_rois[3] * spatial_scale);
|
|
int roi_end_h = round(offset_bottom_rois[4] * spatial_scale);
|
|
|
|
// Force malformed ROIs to be 1x1
|
|
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
|
|
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
|
|
T bin_size_h = static_cast<T>(roi_height)
|
|
/ static_cast<T>(pooled_height);
|
|
T bin_size_w = static_cast<T>(roi_width)
|
|
/ static_cast<T>(pooled_width);
|
|
|
|
int hstart = static_cast<int>(floor(static_cast<T>(ph)
|
|
* bin_size_h));
|
|
int wstart = static_cast<int>(floor(static_cast<T>(pw)
|
|
* bin_size_w));
|
|
int hend = static_cast<int>(ceil(static_cast<T>(ph + 1)
|
|
* bin_size_h));
|
|
int wend = static_cast<int>(ceil(static_cast<T>(pw + 1)
|
|
* bin_size_w));
|
|
|
|
// Add roi offsets and clip to input boundaries
|
|
hstart = min(max(hstart + roi_start_h, 0), height);
|
|
hend = min(max(hend + roi_start_h, 0), height);
|
|
wstart = min(max(wstart + roi_start_w, 0), width);
|
|
wend = min(max(wend + roi_start_w, 0), width);
|
|
bool is_empty = (hend <= hstart) || (wend <= wstart);
|
|
|
|
// Define an empty pooling region to be zero
|
|
T maxval = is_empty ? 0 : -FLT_MAX;
|
|
// If nothing is pooled, argmax = -1 causes nothing to be backprop'd
|
|
int maxidx = -1;
|
|
const T* offset_bottom_data =
|
|
bottom_data + (roi_batch_ind * channels + c) * height * width;
|
|
for (int h = hstart; h < hend; ++h) {
|
|
for (int w = wstart; w < wend; ++w) {
|
|
int bottom_index = h * width + w;
|
|
if (offset_bottom_data[bottom_index] > maxval) {
|
|
maxval = offset_bottom_data[bottom_index];
|
|
maxidx = bottom_index;
|
|
}
|
|
}
|
|
}
|
|
top_data[index] = maxval;
|
|
argmax_data[index] = maxidx;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void RoIPoolFBackward(const int nthreads, const T* top_diff,
|
|
const int* argmax_data, const int num_rois, const T spatial_scale,
|
|
const int channels, const int height, const int width,
|
|
const int pooled_height, const int pooled_width, T* bottom_diff,
|
|
const T* bottom_rois) {
|
|
CUDA_1D_KERNEL_LOOP(index, nthreads) {
|
|
// (n, c, ph, pw) is an element in the pooled output
|
|
int pw = index % pooled_width;
|
|
int ph = (index / pooled_width) % pooled_height;
|
|
int c = (index / pooled_width / pooled_height) % channels;
|
|
int n = index / pooled_width / pooled_height / channels;
|
|
|
|
const T* offset_bottom_rois = bottom_rois + n * 5;
|
|
int roi_batch_ind = offset_bottom_rois[0];
|
|
int bottom_offset = (roi_batch_ind * channels + c) * height * width;
|
|
int top_offset = (n * channels + c) * pooled_height * pooled_width;
|
|
const T* offset_top_diff = top_diff + top_offset;
|
|
T* offset_bottom_diff = bottom_diff + bottom_offset;
|
|
const int* offset_argmax_data = argmax_data + top_offset;
|
|
|
|
int argmax = offset_argmax_data[ph * pooled_width + pw];
|
|
if (argmax != -1) {
|
|
atomicAdd(
|
|
offset_bottom_diff + argmax,
|
|
static_cast<T>(offset_top_diff[ph * pooled_width + pw]));
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cuda(const at::Tensor& input,
|
|
const at::Tensor& rois,
|
|
const float spatial_scale,
|
|
const int pooled_height,
|
|
const int pooled_width) {
|
|
AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor");
|
|
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
|
|
|
|
auto num_rois = rois.size(0);
|
|
auto channels = input.size(1);
|
|
auto height = input.size(2);
|
|
auto width = input.size(3);
|
|
|
|
auto output = at::empty({num_rois, channels, pooled_height, pooled_width}, input.options());
|
|
auto output_size = num_rois * pooled_height * pooled_width * channels;
|
|
auto argmax = at::zeros({num_rois, channels, pooled_height, pooled_width}, input.options().dtype(at::kInt));
|
|
|
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
// dim3 grid(std::min(THCCeilDiv(output_size, 512L), 4096L));
|
|
dim3 grid(std::min(at::ceil_div(output_size, 512L), 4096L));
|
|
dim3 block(512);
|
|
|
|
if (output.numel() == 0) {
|
|
// THCudaCheck(cudaGetLastError());
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
return std::make_tuple(output, argmax);
|
|
}
|
|
|
|
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "ROIPool_forward", [&] {
|
|
RoIPoolFForward<scalar_t><<<grid, block, 0, stream>>>(
|
|
output_size,
|
|
input.contiguous().data_ptr<scalar_t>(),
|
|
spatial_scale,
|
|
channels,
|
|
height,
|
|
width,
|
|
pooled_height,
|
|
pooled_width,
|
|
rois.contiguous().data_ptr<scalar_t>(),
|
|
output.data_ptr<scalar_t>(),
|
|
argmax.data_ptr<int>());
|
|
});
|
|
// THCudaCheck(cudaGetLastError());
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
return std::make_tuple(output, argmax);
|
|
}
|
|
|
|
// TODO remove the dependency on input and use instead its sizes -> save memory
|
|
at::Tensor ROIPool_backward_cuda(const at::Tensor& grad,
|
|
const at::Tensor& input,
|
|
const at::Tensor& rois,
|
|
const at::Tensor& argmax,
|
|
const float spatial_scale,
|
|
const int pooled_height,
|
|
const int pooled_width,
|
|
const int batch_size,
|
|
const int channels,
|
|
const int height,
|
|
const int width) {
|
|
AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor");
|
|
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
|
|
// TODO add more checks
|
|
|
|
auto num_rois = rois.size(0);
|
|
auto grad_input = at::zeros({batch_size, channels, height, width}, grad.options());
|
|
|
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
// dim3 grid(std::min(THCCeilDiv(grad.numel(), 512L), 4096L));
|
|
dim3 grid(std::min(at::ceil_div(grad.numel(), 512L), 4096L));
|
|
dim3 block(512);
|
|
|
|
// handle possibly empty gradients
|
|
if (grad.numel() == 0) {
|
|
// THCudaCheck(cudaGetLastError());
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
return grad_input;
|
|
}
|
|
|
|
AT_DISPATCH_FLOATING_TYPES(grad.scalar_type(), "ROIPool_backward", [&] {
|
|
RoIPoolFBackward<scalar_t><<<grid, block, 0, stream>>>(
|
|
grad.numel(),
|
|
grad.contiguous().data_ptr<scalar_t>(),
|
|
argmax.data_ptr<int>(),
|
|
num_rois,
|
|
spatial_scale,
|
|
channels,
|
|
height,
|
|
width,
|
|
pooled_height,
|
|
pooled_width,
|
|
grad_input.data_ptr<scalar_t>(),
|
|
rois.contiguous().data_ptr<scalar_t>());
|
|
});
|
|
// THCudaCheck(cudaGetLastError());
|
|
AT_CUDA_CHECK(cudaGetLastError());
|
|
return grad_input;
|
|
}
|