mirror of https://github.com/YifanXu74/MQ-Det.git
200 lines
7.7 KiB
Python
200 lines
7.7 KiB
Python
from collections import OrderedDict
|
|
import logging
|
|
import os
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as checkpoint
|
|
from maskrcnn_benchmark.config import try_to_find
|
|
|
|
from timm.models.layers import DropPath, trunc_normal_
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-12):
|
|
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
|
"""
|
|
super(LayerNorm, self).__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, x):
|
|
pdtype = x.dtype
|
|
x = x.float()
|
|
u = x.mean(-1, keepdim=True)
|
|
s = (x - u).pow(2).mean(-1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
|
return self.weight * x.to(pdtype) + self.bias
|
|
|
|
|
|
class QuickGELU(nn.Module):
|
|
def forward(self, x: torch.Tensor):
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module):
|
|
def __init__(self,
|
|
d_model: int,
|
|
n_head: int,
|
|
attn_mask: torch.Tensor = None,
|
|
drop_path: float = 0.0):
|
|
super().__init__()
|
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head)
|
|
self.ln_1 = LayerNorm(d_model)
|
|
self.mlp = nn.Sequential(OrderedDict([
|
|
("c_fc", nn.Linear(d_model, d_model * 4)),
|
|
("gelu", QuickGELU()),
|
|
("c_proj", nn.Linear(d_model * 4, d_model))
|
|
]))
|
|
self.ln_2 = LayerNorm(d_model)
|
|
self.attn_mask = attn_mask
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
|
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
|
|
if self.attn_mask is not None else None
|
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=key_padding_mask)[0]
|
|
|
|
def forward(self, x: torch.Tensor, key_padding_mask: torch.Tensor = None):
|
|
x = x + self.drop_path(self.attention(self.ln_1(x), key_padding_mask=key_padding_mask))
|
|
x = x + self.drop_path(self.mlp(self.ln_2(x)))
|
|
return x
|
|
|
|
|
|
class CLIPTransformer(nn.Module):
|
|
def __init__(self, cfg):
|
|
super().__init__()
|
|
|
|
self.cfg = cfg
|
|
self.use_checkpoint = cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT
|
|
print("LANGUAGE BACKBONE USE GRADIENT CHECKPOINTING: ", self.cfg.MODEL.LANGUAGE_BACKBONE.USE_CHECKPOINT)
|
|
|
|
self.context_length = self.cfg.MODEL.CLIP.CONTEXT_LENGTH
|
|
self.width = self.cfg.MODEL.CLIP.WIDTH
|
|
self.layers = self.cfg.MODEL.CLIP.LAYERS
|
|
self.heads = self.cfg.MODEL.CLIP.HEADS
|
|
self.drop_path = self.cfg.MODEL.CLIP.DROP_PATH
|
|
self.vocab_size = self.cfg.MODEL.CLIP.VOCAB_SIZE
|
|
|
|
self.token_embedding = nn.Embedding(self.vocab_size, self.width)
|
|
|
|
self.positional_embedding = nn.Parameter(
|
|
torch.empty(self.context_length, self.width)
|
|
)
|
|
|
|
# attn_mask = self.build_attention_mask()
|
|
attn_mask = None
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, self.drop_path, self.layers)] # stochastic depth decay rule
|
|
self.resblocks = nn.ModuleList(
|
|
[
|
|
ResidualAttentionBlock(self.width, self.heads, attn_mask, dpr[i])
|
|
for i in range(self.layers)
|
|
]
|
|
)
|
|
|
|
self.ln_final = LayerNorm(self.width)
|
|
|
|
trunc_normal_(self.positional_embedding, std=.02)
|
|
# nn.init.normal_(self.token_embedding, std=.02)
|
|
trunc_normal_(self.token_embedding.weight, std=.02)
|
|
self.apply(self._init_weights)
|
|
|
|
# loading pre-trained weight from our CLIP models
|
|
if len(self.cfg.MODEL.LANGUAGE_BACKBONE.WEIGHT) > 0:
|
|
self.init_weights(pretrained=try_to_find(self.cfg.MODEL.LANGUAGE_BACKBONE.WEIGHT),
|
|
pretrained_layers=['*'])
|
|
|
|
def build_attention_mask(self):
|
|
# lazily create causal attention mask, with full attention between the vision tokens
|
|
# pytorch uses additive attention mask; fill with -inf
|
|
mask = torch.empty(self.context_length, self.context_length)
|
|
mask.fill_(float("-inf"))
|
|
mask.triu_(1) # zero out the lower diagonal
|
|
return mask
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, (nn.Linear, nn.Conv2d)):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def resize_pos_embed_1d(self, posemb, shape_new):
|
|
# rescale the grid of position embeddings when loading from state_dict
|
|
ntok_old = posemb.shape[0]
|
|
if ntok_old > 1:
|
|
ntok_new = shape_new[0]
|
|
posemb_grid = posemb.unsqueeze(dim=0).permute(0, 2, 1).unsqueeze(dim=-1)
|
|
posemb_grid = F.interpolate(posemb_grid, size=[ntok_new, 1], mode='bilinear')
|
|
posemb_grid = posemb_grid.squeeze(dim=-1).permute(0, 2, 1).squeeze(dim=0)
|
|
posemb = posemb_grid
|
|
return posemb
|
|
|
|
def init_weights(self, pretrained="", pretrained_layers=[], verbose=False):
|
|
if os.path.isfile(pretrained):
|
|
pretrained_dict = torch.load(pretrained, map_location="cpu")
|
|
logger.info(f'=> loading pretrained clip text model {pretrained}')
|
|
model_dict = self.state_dict()
|
|
|
|
need_init_state_dict = {}
|
|
for k, v in pretrained_dict.items():
|
|
need_init = (
|
|
k.split('.')[0] in pretrained_layers
|
|
or pretrained_layers[0] is '*'
|
|
)
|
|
if need_init:
|
|
if k.startswith('text.') and k[5:] in model_dict.keys():
|
|
need_init_state_dict[k[5:]] = v
|
|
|
|
# notice the context length now changes from 77 to 256, so we need to resize the positional embedding
|
|
if "positional_embedding" in need_init_state_dict.keys():
|
|
old_pos_embed = need_init_state_dict["positional_embedding"].float()
|
|
new_pos_embed = self.resize_pos_embed_1d(old_pos_embed,
|
|
(self.cfg.MODEL.CLIP.CONTEXT_LENGTH, old_pos_embed.shape[1]))
|
|
need_init_state_dict["positional_embedding"] = new_pos_embed
|
|
self.load_state_dict(need_init_state_dict, strict=True)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {
|
|
'positional_embedding',
|
|
'token_embedding',
|
|
}
|
|
|
|
def forward(self, text):
|
|
input = text["input_ids"]
|
|
mask = text["attention_mask"]
|
|
# get extended attention mask for nn.MultiHeadAttention
|
|
key_padding_mask = (1.0 - mask).to(torch.bool)
|
|
|
|
x = self.token_embedding(input) # [batch_size, n_ctx, d_model]
|
|
x = x + self.positional_embedding
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
|
|
for resblock in self.resblocks:
|
|
if self.use_checkpoint:
|
|
x = checkpoint.checkpoint(resblock, x, key_padding_mask)
|
|
else:
|
|
x = resblock(x, key_padding_mask)
|
|
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
|
|
x = self.ln_final(x)
|
|
|
|
# x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
|
|
|
|
ret = {
|
|
"aggregate": x,
|
|
"embedded": x,
|
|
"masks": mask,
|
|
"hidden": x
|
|
}
|
|
|
|
return ret |