mirror of https://github.com/YifanXu74/MQ-Det.git
230 lines
6.9 KiB
Python
230 lines
6.9 KiB
Python
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
"""
|
|
Utilities related to distributed mode.
|
|
|
|
By default, the reduce of metrics and such are done on GPU, since it's more straightforward (we reuse the NCCL backend)
|
|
If you want to reduce on CPU instead (required for big datasets like GQA), use the env variable MDETR_CPU_REDUCE=1
|
|
"""
|
|
import functools
|
|
import io
|
|
import os
|
|
import datetime
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
_LOCAL_PROCESS_GROUP = None
|
|
|
|
|
|
@functools.lru_cache()
|
|
def _get_global_gloo_group():
|
|
"""
|
|
Return a process group based on gloo backend, containing all the ranks
|
|
The result is cached.
|
|
"""
|
|
|
|
if dist.get_backend() == "nccl":
|
|
return dist.new_group(backend="gloo")
|
|
|
|
return dist.group.WORLD
|
|
|
|
def all_gather(data):
|
|
"""
|
|
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
|
Args:
|
|
data: any picklable object
|
|
Returns:
|
|
list[data]: list of data gathered from each rank
|
|
"""
|
|
|
|
world_size = get_world_size()
|
|
if world_size == 1:
|
|
return [data]
|
|
|
|
cpu_group = None
|
|
if os.getenv("MDETR_CPU_REDUCE") == "1":
|
|
cpu_group = _get_global_gloo_group()
|
|
|
|
buffer = io.BytesIO()
|
|
torch.save(data, buffer)
|
|
data_view = buffer.getbuffer()
|
|
device = "cuda" if cpu_group is None else "cpu"
|
|
tensor = torch.ByteTensor(data_view).to(device)
|
|
|
|
# obtain Tensor size of each rank
|
|
local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long)
|
|
size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)]
|
|
if cpu_group is None:
|
|
dist.all_gather(size_list, local_size)
|
|
else:
|
|
print("gathering on cpu")
|
|
dist.all_gather(size_list, local_size, group=cpu_group)
|
|
size_list = [int(size.item()) for size in size_list]
|
|
max_size = max(size_list)
|
|
assert isinstance(local_size.item(), int)
|
|
local_size = int(local_size.item())
|
|
|
|
# receiving Tensor from all ranks
|
|
# we pad the tensor because torch all_gather does not support
|
|
# gathering tensors of different shapes
|
|
tensor_list = []
|
|
for _ in size_list:
|
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
|
|
if local_size != max_size:
|
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device)
|
|
tensor = torch.cat((tensor, padding), dim=0)
|
|
if cpu_group is None:
|
|
dist.all_gather(tensor_list, tensor)
|
|
else:
|
|
dist.all_gather(tensor_list, tensor, group=cpu_group)
|
|
|
|
data_list = []
|
|
for size, tensor in zip(size_list, tensor_list):
|
|
tensor = torch.split(tensor, [size, max_size - size], dim=0)[0]
|
|
buffer = io.BytesIO(tensor.cpu().numpy())
|
|
obj = torch.load(buffer)
|
|
data_list.append(obj)
|
|
|
|
return data_list
|
|
|
|
|
|
def reduce_dict(input_dict, average=True):
|
|
"""
|
|
Args:
|
|
input_dict (dict): all the values will be reduced
|
|
average (bool): whether to do average or sum
|
|
Reduce the values in the dictionary from all processes so that all processes
|
|
have the averaged results. Returns a dict with the same fields as
|
|
input_dict, after reduction.
|
|
"""
|
|
world_size = get_world_size()
|
|
if world_size < 2:
|
|
return input_dict
|
|
with torch.no_grad():
|
|
names = []
|
|
values = []
|
|
# sort the keys so that they are consistent across processes
|
|
for k in sorted(input_dict.keys()):
|
|
names.append(k)
|
|
values.append(input_dict[k])
|
|
values = torch.stack(values, dim=0)
|
|
dist.all_reduce(values)
|
|
if average:
|
|
values /= world_size
|
|
reduced_dict = {k: v for k, v in zip(names, values)}
|
|
return reduced_dict
|
|
|
|
|
|
def setup_for_distributed(is_master):
|
|
"""
|
|
This function disables printing when not in master process
|
|
"""
|
|
import builtins as __builtin__
|
|
|
|
builtin_print = __builtin__.print
|
|
|
|
def print(*args, **kwargs):
|
|
force = kwargs.pop("force", False)
|
|
if is_master or force:
|
|
builtin_print(*args, **kwargs)
|
|
|
|
__builtin__.print = print
|
|
|
|
|
|
def is_dist_avail_and_initialized():
|
|
"""
|
|
Returns:
|
|
True if distributed training is enabled
|
|
"""
|
|
if not dist.is_available():
|
|
return False
|
|
if not dist.is_initialized():
|
|
return False
|
|
return True
|
|
|
|
|
|
def get_world_size():
|
|
"""
|
|
Returns:
|
|
The number of processes in the process group
|
|
"""
|
|
if not is_dist_avail_and_initialized():
|
|
return 1
|
|
return dist.get_world_size()
|
|
|
|
|
|
def get_rank():
|
|
"""
|
|
Returns:
|
|
The rank of the current process within the global process group.
|
|
"""
|
|
if not is_dist_avail_and_initialized():
|
|
return 0
|
|
return dist.get_rank()
|
|
|
|
|
|
def get_local_rank() -> int:
|
|
"""
|
|
Returns:
|
|
The rank of the current process within the local (per-machine) process group.
|
|
"""
|
|
if not dist.is_available():
|
|
return 0
|
|
if not dist.is_initialized():
|
|
return 0
|
|
assert _LOCAL_PROCESS_GROUP is not None
|
|
return dist.get_rank(group=_LOCAL_PROCESS_GROUP)
|
|
|
|
|
|
def get_local_size() -> int:
|
|
"""
|
|
Returns:
|
|
The size of the per-machine process group,
|
|
i.e. the number of processes per machine.
|
|
"""
|
|
if not dist.is_available():
|
|
return 1
|
|
if not dist.is_initialized():
|
|
return 1
|
|
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)
|
|
|
|
|
|
def is_main_process():
|
|
"""Return true if the current process is the main one"""
|
|
return get_rank() == 0
|
|
|
|
|
|
def save_on_master(*args, **kwargs):
|
|
"""Utility function to save only from the main process"""
|
|
if is_main_process():
|
|
torch.save(*args, **kwargs)
|
|
|
|
|
|
def init_distributed_mode(args):
|
|
"""Initialize distributed training, if appropriate"""
|
|
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
|
|
args.rank = int(os.environ["RANK"])
|
|
args.world_size = int(os.environ["WORLD_SIZE"])
|
|
args.gpu = int(os.environ["LOCAL_RANK"])
|
|
elif "SLURM_PROCID" in os.environ:
|
|
args.rank = int(os.environ["SLURM_PROCID"])
|
|
args.gpu = args.rank % torch.cuda.device_count()
|
|
else:
|
|
print("Not using distributed mode")
|
|
args.distributed = False
|
|
return
|
|
|
|
args.distributed = True
|
|
|
|
torch.cuda.set_device(args.gpu)
|
|
args.dist_backend = "nccl"
|
|
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
|
|
|
|
dist.init_process_group(
|
|
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank,
|
|
timeout=datetime.timedelta(0, 7200)
|
|
)
|
|
dist.barrier()
|
|
setup_for_distributed(args.debug or args.rank == 0)
|