mirror of https://github.com/YifanXu74/MQ-Det.git
215 lines
7.0 KiB
Python
215 lines
7.0 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
import torch
|
|
|
|
import pycocotools.mask as mask_utils
|
|
|
|
# transpose
|
|
FLIP_LEFT_RIGHT = 0
|
|
FLIP_TOP_BOTTOM = 1
|
|
|
|
|
|
class Mask(object):
|
|
"""
|
|
This class is unfinished and not meant for use yet
|
|
It is supposed to contain the mask for an object as
|
|
a 2d tensor
|
|
"""
|
|
|
|
def __init__(self, masks, size, mode):
|
|
self.masks = masks
|
|
self.size = size
|
|
self.mode = mode
|
|
|
|
def transpose(self, method):
|
|
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
|
|
raise NotImplementedError(
|
|
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
|
|
)
|
|
|
|
width, height = self.size
|
|
if method == FLIP_LEFT_RIGHT:
|
|
dim = width
|
|
idx = 2
|
|
elif method == FLIP_TOP_BOTTOM:
|
|
dim = height
|
|
idx = 1
|
|
|
|
flip_idx = list(range(dim)[::-1])
|
|
flipped_masks = self.masks.index_select(dim, flip_idx)
|
|
return Mask(flipped_masks, self.size, self.mode)
|
|
|
|
def crop(self, box):
|
|
w, h = box[2] - box[0], box[3] - box[1]
|
|
|
|
cropped_masks = self.masks[:, box[1] : box[3], box[0] : box[2]]
|
|
return Mask(cropped_masks, size=(w, h), mode=self.mode)
|
|
|
|
def resize(self, size, *args, **kwargs):
|
|
pass
|
|
|
|
|
|
class Polygons(object):
|
|
"""
|
|
This class holds a set of polygons that represents a single instance
|
|
of an object mask. The object can be represented as a set of
|
|
polygons
|
|
"""
|
|
|
|
def __init__(self, polygons, size, mode):
|
|
# assert isinstance(polygons, list), '{}'.format(polygons)
|
|
if isinstance(polygons, list):
|
|
polygons = [torch.as_tensor(p, dtype=torch.float32) for p in polygons]
|
|
elif isinstance(polygons, Polygons):
|
|
polygons = polygons.polygons
|
|
|
|
self.polygons = polygons
|
|
self.size = size
|
|
self.mode = mode
|
|
|
|
def transpose(self, method):
|
|
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
|
|
raise NotImplementedError(
|
|
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
|
|
)
|
|
|
|
flipped_polygons = []
|
|
width, height = self.size
|
|
if method == FLIP_LEFT_RIGHT:
|
|
dim = width
|
|
idx = 0
|
|
elif method == FLIP_TOP_BOTTOM:
|
|
dim = height
|
|
idx = 1
|
|
|
|
for poly in self.polygons:
|
|
p = poly.clone()
|
|
TO_REMOVE = 1
|
|
p[idx::2] = dim - poly[idx::2] - TO_REMOVE
|
|
flipped_polygons.append(p)
|
|
|
|
return Polygons(flipped_polygons, size=self.size, mode=self.mode)
|
|
|
|
def crop(self, box):
|
|
w, h = box[2] - box[0], box[3] - box[1]
|
|
|
|
# TODO chck if necessary
|
|
w = max(w, 1)
|
|
h = max(h, 1)
|
|
|
|
cropped_polygons = []
|
|
for poly in self.polygons:
|
|
p = poly.clone()
|
|
p[0::2] = p[0::2] - box[0] # .clamp(min=0, max=w)
|
|
p[1::2] = p[1::2] - box[1] # .clamp(min=0, max=h)
|
|
cropped_polygons.append(p)
|
|
|
|
return Polygons(cropped_polygons, size=(w, h), mode=self.mode)
|
|
|
|
def resize(self, size, *args, **kwargs):
|
|
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size))
|
|
if ratios[0] == ratios[1]:
|
|
ratio = ratios[0]
|
|
scaled_polys = [p * ratio for p in self.polygons]
|
|
return Polygons(scaled_polys, size, mode=self.mode)
|
|
|
|
ratio_w, ratio_h = ratios
|
|
scaled_polygons = []
|
|
for poly in self.polygons:
|
|
p = poly.clone()
|
|
p[0::2] *= ratio_w
|
|
p[1::2] *= ratio_h
|
|
scaled_polygons.append(p)
|
|
|
|
return Polygons(scaled_polygons, size=size, mode=self.mode)
|
|
|
|
def convert(self, mode):
|
|
width, height = self.size
|
|
if mode == "mask":
|
|
rles = mask_utils.frPyObjects(
|
|
[p.detach().numpy() for p in self.polygons], height, width
|
|
)
|
|
rle = mask_utils.merge(rles)
|
|
mask = mask_utils.decode(rle)
|
|
mask = torch.from_numpy(mask)
|
|
# TODO add squeeze?
|
|
return mask
|
|
|
|
def __repr__(self):
|
|
s = self.__class__.__name__ + "("
|
|
s += "num_polygons={}, ".format(len(self.polygons))
|
|
s += "image_width={}, ".format(self.size[0])
|
|
s += "image_height={}, ".format(self.size[1])
|
|
s += "mode={})".format(self.mode)
|
|
return s
|
|
|
|
|
|
class SegmentationMask(object):
|
|
"""
|
|
This class stores the segmentations for all objects in the image
|
|
"""
|
|
|
|
def __init__(self, polygons, size, mode=None):
|
|
"""
|
|
Arguments:
|
|
polygons: a list of list of lists of numbers. The first
|
|
level of the list correspond to individual instances,
|
|
the second level to all the polygons that compose the
|
|
object, and the third level to the polygon coordinates.
|
|
"""
|
|
assert isinstance(polygons, list)
|
|
|
|
self.polygons = [Polygons(p, size, mode) for p in polygons]
|
|
self.size = size
|
|
self.mode = mode
|
|
|
|
def transpose(self, method):
|
|
if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM):
|
|
raise NotImplementedError(
|
|
"Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented"
|
|
)
|
|
|
|
flipped = []
|
|
for polygon in self.polygons:
|
|
flipped.append(polygon.transpose(method))
|
|
return SegmentationMask(flipped, size=self.size, mode=self.mode)
|
|
|
|
def crop(self, box):
|
|
w, h = box[2] - box[0], box[3] - box[1]
|
|
cropped = []
|
|
for polygon in self.polygons:
|
|
cropped.append(polygon.crop(box))
|
|
return SegmentationMask(cropped, size=(w, h), mode=self.mode)
|
|
|
|
def resize(self, size, *args, **kwargs):
|
|
scaled = []
|
|
for polygon in self.polygons:
|
|
scaled.append(polygon.resize(size, *args, **kwargs))
|
|
return SegmentationMask(scaled, size=size, mode=self.mode)
|
|
|
|
def to(self, *args, **kwargs):
|
|
return self
|
|
|
|
def __getitem__(self, item):
|
|
if isinstance(item, (int, slice)):
|
|
selected_polygons = [self.polygons[item]]
|
|
else:
|
|
# advanced indexing on a single dimension
|
|
selected_polygons = []
|
|
if isinstance(item, torch.Tensor) and item.dtype == torch.bool:
|
|
item = item.nonzero()
|
|
item = item.squeeze(1) if item.numel() > 0 else item
|
|
item = item.tolist()
|
|
for i in item:
|
|
selected_polygons.append(self.polygons[i])
|
|
return SegmentationMask(selected_polygons, size=self.size, mode=self.mode)
|
|
|
|
def __iter__(self):
|
|
return iter(self.polygons)
|
|
|
|
def __repr__(self):
|
|
s = self.__class__.__name__ + "("
|
|
s += "num_instances={}, ".format(len(self.polygons))
|
|
s += "image_width={}, ".format(self.size[0])
|
|
s += "image_height={})".format(self.size[1])
|
|
return s
|