mirror of https://github.com/YifanXu74/MQ-Det.git
321 lines
13 KiB
Python
321 lines
13 KiB
Python
# ------------------------------------------------------------------------
|
|
# Grounding DINO
|
|
# url: https://github.com/IDEA-Research/GroundingDINO
|
|
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
|
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
|
# ------------------------------------------------------------------------
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint as checkpoint
|
|
from torch import Tensor, nn
|
|
from torchvision.ops.boxes import nms
|
|
from transformers import BertConfig, BertModel, BertPreTrainedModel
|
|
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
|
|
|
|
|
|
def exists(val):
|
|
if val is not None:
|
|
if len(val) > 0:
|
|
return True
|
|
else:
|
|
return False
|
|
else:
|
|
return False
|
|
|
|
class BertModelWarper(nn.Module):
|
|
def __init__(self, bert_model):
|
|
super().__init__()
|
|
# self.bert = bert_modelc
|
|
|
|
self.config = bert_model.config
|
|
self.embeddings = bert_model.embeddings
|
|
self.encoder = bert_model.encoder
|
|
self.pooler = bert_model.pooler
|
|
try:
|
|
self.pre_select = bert_model.pre_select
|
|
except:
|
|
pass
|
|
try:
|
|
self.cfg = bert_model.cfg
|
|
except:
|
|
pass
|
|
|
|
self.get_extended_attention_mask = bert_model.get_extended_attention_mask
|
|
self.invert_attention_mask = bert_model.invert_attention_mask
|
|
self.get_head_mask = bert_model.get_head_mask
|
|
|
|
def get_gate_value(self):
|
|
attn_gates=[]
|
|
ff_gates=[]
|
|
for blk in self.encoder.qv_layer:
|
|
# try:
|
|
if not self.cfg.VISION_QUERY.CONDITION_GATE:
|
|
attn_gates.append(blk.attn_gate)
|
|
# except:
|
|
# pass
|
|
ff_gates.append(blk.ff_gate)
|
|
return {'attn_gates': attn_gates, 'ffn_gates': ff_gates}
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
attention_mask=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
head_mask=None,
|
|
inputs_embeds=None,
|
|
encoder_hidden_states=None,
|
|
encoder_attention_mask=None,
|
|
past_key_values=None,
|
|
use_cache=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
vision = None, # (batch, vision, dim)
|
|
images = None, # (batch, image, dim)
|
|
vision_attention_mask = None,
|
|
batched_pos_category_map = None,
|
|
):
|
|
r"""
|
|
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
|
the model is configured as a decoder.
|
|
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
|
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
|
use_cache (:obj:`bool`, `optional`):
|
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
|
decoding (see :obj:`past_key_values`).
|
|
"""
|
|
output_attentions = (
|
|
output_attentions if output_attentions is not None else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if self.config.is_decoder:
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
else:
|
|
use_cache = False
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
batch_size, seq_length = input_shape
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
batch_size, seq_length = input_shape
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
# past_key_values_length
|
|
past_key_values_length = (
|
|
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
|
)
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(
|
|
((batch_size, seq_length + past_key_values_length)), device=device
|
|
)
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
|
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
|
attention_mask, input_shape, device
|
|
)
|
|
|
|
# If a 2D or 3D attention mask is provided for the cross-attention
|
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
|
if self.config.is_decoder and encoder_hidden_states is not None:
|
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
if encoder_attention_mask is None:
|
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
|
else:
|
|
encoder_extended_attention_mask = None
|
|
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
|
# import ipdb; ipdb.set_trace()
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
|
|
|
embedding_output = self.embeddings(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
token_type_ids=token_type_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
past_key_values_length=past_key_values_length,
|
|
)
|
|
|
|
augmented_vision = None
|
|
if (exists(images) and exists(vision)):
|
|
vision = self.pre_select(vision, images)['vision']
|
|
augmented_vision = vision
|
|
|
|
encoder_outputs = self.encoder(
|
|
embedding_output,
|
|
attention_mask=extended_attention_mask,
|
|
head_mask=head_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_extended_attention_mask,
|
|
past_key_values=past_key_values,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
vision=vision,
|
|
vision_attention_mask=vision_attention_mask,
|
|
batched_pos_category_map=batched_pos_category_map,
|
|
)
|
|
sequence_output = encoder_outputs[0]
|
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
|
|
|
if not return_dict:
|
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
|
|
|
out = BaseModelOutputWithPoolingAndCrossAttentions(
|
|
last_hidden_state=sequence_output,
|
|
pooler_output=pooled_output,
|
|
past_key_values=encoder_outputs.past_key_values,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
cross_attentions=encoder_outputs.cross_attentions,
|
|
)
|
|
|
|
out['vision_query_gates'] = self.get_gate_value()
|
|
if self.cfg.VISION_QUERY.QUERY_FUSION:
|
|
out['augmented_vision'] = augmented_vision
|
|
out['vision_attention_mask'] = vision_attention_mask
|
|
return out
|
|
|
|
|
|
class TextEncoderShell(nn.Module):
|
|
def __init__(self, text_encoder):
|
|
super().__init__()
|
|
self.text_encoder = text_encoder
|
|
self.config = self.text_encoder.config
|
|
|
|
def forward(self, **kw):
|
|
# feed into text encoder
|
|
return self.text_encoder(**kw)
|
|
|
|
|
|
def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer):
|
|
"""Generate attention mask between each pair of special tokens
|
|
Args:
|
|
input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
|
|
special_tokens_mask (list): special tokens mask.
|
|
Returns:
|
|
torch.Tensor: attention mask between each special tokens.
|
|
"""
|
|
input_ids = tokenized["input_ids"]
|
|
bs, num_token = input_ids.shape
|
|
# special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
|
|
special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
|
|
for special_token in special_tokens_list:
|
|
special_tokens_mask |= input_ids == special_token
|
|
|
|
# idxs: each row is a list of indices of special tokens
|
|
idxs = torch.nonzero(special_tokens_mask)
|
|
|
|
# generate attention mask and positional ids
|
|
attention_mask = (
|
|
torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1)
|
|
)
|
|
position_ids = torch.zeros((bs, num_token), device=input_ids.device)
|
|
previous_col = 0
|
|
for i in range(idxs.shape[0]):
|
|
row, col = idxs[i]
|
|
if (col == 0) or (col == num_token - 1):
|
|
attention_mask[row, col, col] = True
|
|
position_ids[row, col] = 0
|
|
else:
|
|
attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
|
|
position_ids[row, previous_col + 1 : col + 1] = torch.arange(
|
|
0, col - previous_col, device=input_ids.device
|
|
)
|
|
|
|
previous_col = col
|
|
|
|
# # padding mask
|
|
# padding_mask = tokenized['attention_mask']
|
|
# attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
|
|
|
|
return attention_mask, position_ids.to(torch.long)
|
|
|
|
|
|
def generate_masks_with_special_tokens_and_transfer_map(tokenized, special_tokens_list, tokenizer):
|
|
"""Generate attention mask between each pair of special tokens
|
|
Args:
|
|
input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
|
|
special_tokens_mask (list): special tokens mask.
|
|
Returns:
|
|
torch.Tensor: attention mask between each special tokens.
|
|
"""
|
|
input_ids = tokenized["input_ids"]
|
|
bs, num_token = input_ids.shape
|
|
# special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
|
|
special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
|
|
for special_token in special_tokens_list:
|
|
special_tokens_mask |= input_ids == special_token
|
|
|
|
# idxs: each row is a list of indices of special tokens
|
|
idxs = torch.nonzero(special_tokens_mask)
|
|
|
|
# generate attention mask and positional ids
|
|
attention_mask = (
|
|
torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1)
|
|
)
|
|
position_ids = torch.zeros((bs, num_token), device=input_ids.device)
|
|
cate_to_token_mask_list = [[] for _ in range(bs)]
|
|
previous_col = 0
|
|
for i in range(idxs.shape[0]):
|
|
row, col = idxs[i]
|
|
if (col == 0) or (col == num_token - 1):
|
|
attention_mask[row, col, col] = True
|
|
position_ids[row, col] = 0
|
|
else:
|
|
attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
|
|
position_ids[row, previous_col + 1 : col + 1] = torch.arange(
|
|
0, col - previous_col, device=input_ids.device
|
|
)
|
|
c2t_maski = torch.zeros((num_token), device=input_ids.device).bool()
|
|
c2t_maski[previous_col + 1 : col] = True
|
|
cate_to_token_mask_list[row].append(c2t_maski)
|
|
previous_col = col
|
|
|
|
cate_to_token_mask_list = [
|
|
torch.stack(cate_to_token_mask_listi, dim=0)
|
|
for cate_to_token_mask_listi in cate_to_token_mask_list
|
|
]
|
|
|
|
# # padding mask
|
|
# padding_mask = tokenized['attention_mask']
|
|
# attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
|
|
|
|
return attention_mask, position_ids.to(torch.long), cate_to_token_mask_list
|