mirror of https://github.com/YifanXu74/MQ-Det.git
164 lines
5.8 KiB
Python
164 lines
5.8 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
from bisect import bisect_right
|
|
|
|
import math
|
|
import torch
|
|
|
|
|
|
# FIXME ideally this would be achieved with a CombinedLRScheduler,
|
|
# separating MultiStepLR with WarmupLR
|
|
# but the current LRScheduler design doesn't allow it
|
|
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler):
|
|
def __init__(
|
|
self,
|
|
optimizer,
|
|
milestones,
|
|
gamma=0.1,
|
|
warmup_factor=1.0 / 3,
|
|
warmup_iters=500,
|
|
warmup_method="linear",
|
|
last_epoch=-1,
|
|
):
|
|
if not list(milestones) == sorted(milestones):
|
|
raise ValueError(
|
|
"Milestones should be a list of" " increasing integers. Got {}",
|
|
milestones,
|
|
)
|
|
|
|
if warmup_method not in ("constant", "linear"):
|
|
raise ValueError(
|
|
"Only 'constant' or 'linear' warmup_method accepted"
|
|
"got {}".format(warmup_method)
|
|
)
|
|
self.milestones = milestones
|
|
self.gamma = gamma
|
|
self.warmup_factor = warmup_factor
|
|
self.warmup_iters = warmup_iters
|
|
self.warmup_method = warmup_method
|
|
super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self):
|
|
warmup_factor = 1
|
|
if self.last_epoch < self.warmup_iters:
|
|
if self.warmup_method == "constant":
|
|
warmup_factor = self.warmup_factor
|
|
elif self.warmup_method == "linear":
|
|
alpha = float(self.last_epoch) / self.warmup_iters
|
|
warmup_factor = self.warmup_factor * (1 - alpha) + alpha
|
|
return [
|
|
base_lr
|
|
* warmup_factor
|
|
* self.gamma ** bisect_right(self.milestones, self.last_epoch)
|
|
for base_lr in self.base_lrs
|
|
]
|
|
|
|
|
|
class WarmupCosineAnnealingLR(torch.optim.lr_scheduler._LRScheduler):
|
|
def __init__(
|
|
self,
|
|
optimizer,
|
|
max_iters,
|
|
gamma=0.1,
|
|
warmup_factor=1.0 / 3,
|
|
warmup_iters=500,
|
|
warmup_method="linear",
|
|
eta_min = 0,
|
|
last_epoch=-1,
|
|
):
|
|
|
|
if warmup_method not in ("constant", "linear"):
|
|
raise ValueError(
|
|
"Only 'constant' or 'linear' warmup_method accepted"
|
|
"got {}".format(warmup_method)
|
|
)
|
|
self.max_iters = max_iters
|
|
self.gamma = gamma
|
|
self.warmup_factor = warmup_factor
|
|
self.warmup_iters = warmup_iters
|
|
self.warmup_method = warmup_method
|
|
self.eta_min = eta_min
|
|
super(WarmupCosineAnnealingLR, self).__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self):
|
|
warmup_factor = 1
|
|
|
|
if self.last_epoch < self.warmup_iters:
|
|
if self.warmup_method == "constant":
|
|
warmup_factor = self.warmup_factor
|
|
elif self.warmup_method == "linear":
|
|
alpha = float(self.last_epoch) / self.warmup_iters
|
|
warmup_factor = self.warmup_factor * (1 - alpha) + alpha
|
|
return [
|
|
base_lr
|
|
* warmup_factor
|
|
for base_lr in self.base_lrs
|
|
]
|
|
else:
|
|
return [
|
|
self.eta_min
|
|
+ (base_lr - self.eta_min)
|
|
* (1 + math.cos(math.pi * (self.last_epoch - self.warmup_iters) / self.max_iters)) / 2
|
|
for base_lr in self.base_lrs
|
|
]
|
|
|
|
class WarmupReduceLROnPlateau(torch.optim.lr_scheduler.ReduceLROnPlateau):
|
|
def __init__(
|
|
self,
|
|
optimizer,
|
|
max_iters,
|
|
gamma=0.1,
|
|
warmup_factor=1.0 / 3,
|
|
warmup_iters=500,
|
|
warmup_method="linear",
|
|
eta_min = 0,
|
|
last_epoch=-1,
|
|
patience = 5,
|
|
verbose = False,
|
|
):
|
|
|
|
if warmup_method not in ("constant", "linear"):
|
|
raise ValueError(
|
|
"Only 'constant' or 'linear' warmup_method accepted"
|
|
"got {}".format(warmup_method)
|
|
)
|
|
self.warmup_factor = warmup_factor
|
|
self.warmup_iters = warmup_iters
|
|
self.warmup_method = warmup_method
|
|
self.eta_min = eta_min
|
|
|
|
if last_epoch == -1:
|
|
for group in optimizer.param_groups:
|
|
group.setdefault('initial_lr', group['lr'])
|
|
else:
|
|
for i, group in enumerate(optimizer.param_groups):
|
|
if 'initial_lr' not in group:
|
|
raise KeyError("param 'initial_lr' is not specified "
|
|
"in param_groups[{}] when resuming an optimizer".format(i))
|
|
self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
|
|
super(WarmupReduceLROnPlateau, self).__init__(optimizer, factor=gamma, patience=patience, mode='max', min_lr=eta_min, verbose = verbose)
|
|
|
|
def step(self, metrics=None):
|
|
warmup_factor = 1
|
|
|
|
if self.last_epoch < self.warmup_iters:
|
|
if self.warmup_method == "constant":
|
|
warmup_factor = self.warmup_factor
|
|
elif self.warmup_method == "linear":
|
|
alpha = float(self.last_epoch) / self.warmup_iters
|
|
warmup_factor = self.warmup_factor * (1 - alpha) + alpha
|
|
|
|
if self.last_epoch >= self.warmup_iters-1:
|
|
warmup_factor = 1.0
|
|
|
|
warmup_lrs = [
|
|
base_lr
|
|
* warmup_factor
|
|
for base_lr in self.base_lrs
|
|
]
|
|
|
|
for param_group, lr in zip(self.optimizer.param_groups, warmup_lrs):
|
|
param_group['lr'] = lr
|
|
|
|
self.last_epoch += 1
|
|
elif metrics:
|
|
super().step(metrics) |