NAFNet/basicsr/models/archs/NAFNetSR_arch.py

193 lines
6.5 KiB
Python
Raw Normal View History

2022-04-12 01:15:02 +08:00
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.models.archs.NAFNet_arch import LayerNorm2d, NAFBlock
from basicsr.models.archs.arch_util import MySequential
from basicsr.models.archs.local_arch import Local_Base
class GenerateRelations(nn.Module):
def __init__(self, c):
super().__init__()
self.scale = c ** -0.5
self.norm_l = LayerNorm2d(c)
self.norm_r = LayerNorm2d(c)
self.l_proj = nn.Conv2d(c, c, kernel_size=1, stride=1, padding=0)
self.r_proj = nn.Conv2d(c, c, kernel_size=1, stride=1, padding=0)
def forward(self, lfeats, rfeats):
B, C, H, W = lfeats.shape
lfeats = lfeats.view(B, C, H, W)
rfeats = rfeats.view(B, C, H, W)
lfeats, rfeats = self.l_proj(self.norm_l(lfeats)), self.r_proj(self.norm_r(rfeats))
x = lfeats.permute(0, 2, 3, 1) #B H W c
y = rfeats.permute(0, 2, 1, 3) #B H c W
z = torch.matmul(x, y) #B H W W
return self.scale * z
class FusionModule(nn.Module):
def __init__(self, c):
super().__init__()
self.relation_generator = GenerateRelations(c)
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.l_proj = nn.Conv2d(c, c, kernel_size=1, stride=1, padding=0)
self.r_proj = nn.Conv2d(c, c, kernel_size=1, stride=1, padding=0)
def forward(self, lfeats, rfeats):
B, C, H, W = lfeats.shape
relations = self.relation_generator(lfeats, rfeats) # B, H, W, W
lfeats_projected = self.l_proj(lfeats.view(B, C, H, W)).permute(0, 2, 3, 1) # B, H, W, c
rfeats_projected = self.r_proj(rfeats.view(B, C, H, W)).permute(0, 2, 3, 1) # B, H, W, c
lresidual = torch.matmul(torch.softmax(relations, dim=-1), rfeats_projected) #B, H, W, c
rresidual = torch.matmul(torch.softmax(relations.permute(0, 1, 3, 2), dim=-1), lfeats_projected) #B, H, W, c
lresidual = lresidual.permute(0, 3, 1, 2).view(B, C, H, W) * self.beta
rresidual = rresidual.permute(0, 3, 1, 2).view(B, C, H, W) * self.gamma
return lfeats + lresidual, rfeats + rresidual
class DropPath(nn.Module):
def __init__(self, drop_rate, module):
super().__init__()
self.drop_rate = drop_rate
self.module = module
def forward(self, *feats):
if self.training and np.random.rand() < self.drop_rate:
return feats
new_feats = self.module(*feats)
factor = 1. / (1 - self.drop_rate) if self.training else 1.
if self.training and factor != 1.:
new_feats = tuple([x+factor*(new_x-x) for x, new_x in zip(feats, new_feats)])
return new_feats
class NAFBlockSR(nn.Module):
def __init__(self, c, fusion=False, drop_out_rate=0.):
super().__init__()
self.blk = NAFBlock(c, drop_out_rate=drop_out_rate)
self.fusion = FusionModule(c) if fusion else None
def forward(self, *feats):
feats = tuple([self.blk(x) for x in feats])
if self.fusion:
feats = self.fusion(*feats)
return feats
class NAFNetSR(nn.Module):
def __init__(self, img_channel=3, width=16, num_blks=1, drop_path_rate=0., drop_out_rate=0., fusion_from=-1, fusion_to=-1, dual=True, up_scale=4):
super().__init__()
self.dual = dual
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.body = MySequential(
*[DropPath(
drop_path_rate,
NAFBlockSR(
width,
fusion=(fusion_from <= i and i <= fusion_to),
drop_out_rate=drop_out_rate
)) for i in range(num_blks)]
)
self.up = nn.Sequential(
nn.Conv2d(in_channels=width, out_channels=img_channel * up_scale**2, kernel_size=3, padding=1, stride=1, groups=1, bias=True),
nn.PixelShuffle(up_scale)
)
self.up_scale = up_scale
def forward(self, inp):
inp_hr = F.interpolate(inp, scale_factor=self.up_scale, mode='bilinear')
if self.dual:
inp = inp.chunk(2, dim=1)
else:
inp = (inp, )
feats = [self.intro(x) for x in inp]
feats = self.body(*feats)
out = torch.cat([self.up(x) for x in feats], dim=1)
out = out + inp_hr
return out
class NAFNetSRLocal(Local_Base, NAFNetSR):
def __init__(self, *args, train_size=(1, 6, 64, 64), fast_imp=False, **kwargs):
Local_Base.__init__(self)
NAFNetSR.__init__(self, *args, **kwargs)
N, C, H, W = train_size
base_size = (int(H * 1.5), int(W * 1.5))
self.eval()
with torch.no_grad():
self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp)
if __name__ == '__main__':
img_channel = 3
num_blks = 64
width = 96
# num_blks = 32
# width = 64
# num_blks = 16
# width = 48
dual=True
# fusion_from = 0
# fusion_to = num_blks
fusion_from = 0
fusion_to = 1000
droppath=0.1
train_size = (1, 6, 30, 90)
net = NAFNetSRLocal(up_scale=2,train_size=train_size, fast_imp=True, img_channel=img_channel, width=width, num_blks=num_blks, dual=dual,
fusion_from=fusion_from,
fusion_to=fusion_to, drop_path_rate=droppath)
# net = NAFNetSR(img_channel=img_channel, width=width, num_blks=num_blks, dual=dual,
# fusion_from=fusion_from,
# fusion_to=fusion_to, drop_path_rate=droppath)
c = 6 if dual else 3
a = torch.randn((2, c, 24, 23))
b = net(a)
print(b.shape)
# inp_shape = (6, 128, 128)
inp_shape = (c, 64, 64)
# inp_shape = (6, 256, 96)
from ptflops import get_model_complexity_info
FLOPS = 0
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)
# params = float(params[:-4])
print(params)
macs = float(macs[:-4]) + FLOPS / 10 ** 9
print('mac', macs, params, 'fusion from .. to ', fusion_from, fusion_to)
# from basicsr.models.archs.arch_util import measure_inference_speed
# net = net.cuda()
# data = torch.randn((1, 6, 128, 128)).cuda()
# measure_inference_speed(net, (data,))