add Huggingface web demo

pull/96/head
achusky 2022-04-28 00:44:38 +08:00
parent 1bf5c98812
commit 231617acc3
5 changed files with 2 additions and 0 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 120 KiB

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 121 KiB

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.6 MiB

After

Width:  |  Height:  |  Size: 330 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.6 MiB

After

Width:  |  Height:  |  Size: 338 KiB

View File

@ -60,6 +60,7 @@ python setup.py develop --no_cuda_ext
* ```--input_path```: the path of the degraded image
* ```--output_path```: the path to save the predicted image
* [pretrained models](https://github.com/megvii-research/NAFNet/#results-and-pre-trained-models) should be downloaded.
* Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo for single image restoration[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/chuxiaojie/NAFNet)
* Stereo Image Inference Demo:
* Stereo Image Super-resolution:
```
@ -72,6 +73,7 @@ python setup.py develop --no_cuda_ext
* ```--output_l_path```: the path to save the predicted left image
* ```--output_r_path```: the path to save the predicted right image
* [pretrained models](https://github.com/megvii-research/NAFNet/#results-and-pre-trained-models) should be downloaded.
* Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo for stereo image super-resolution[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/chuxiaojie/NAFSSR)
* Try the web demo with all three tasks here: [![Replicate](https://replicate.com/megvii-research/nafnet/badge)](https://replicate.com/megvii-research/nafnet)
### Results and Pre-trained Models