Update readme.md
parent
e475757a39
commit
25cd8c419b
|
@ -11,6 +11,10 @@ The official pytorch implementation of the paper **[Simple Baselines for Image R
|
|||
>In this paper, we propose a simple baseline that exceeds the SOTA methods and is computationally efficient.
|
||||
>To further simplify the baseline, we reveal that the nonlinear activation functions, e.g. Sigmoid, ReLU, GELU, Softmax, etc. are **not necessary**: they could be replaced by multiplication or removed. Thus, we derive a Nonlinear Activation Free Network, namely NAFNet, from the baseline. SOTA results are achieved on various challenging benchmarks, e.g. 33.69 dB PSNR on GoPro (for image deblurring), exceeding the previous SOTA 0.38 dB with only 8.4% of its computational costs; 40.30 dB PSNR on SIDD (for image denoising), exceeding the previous SOTA 0.28 dB with less than half of its computational costs.
|
||||
|
||||
| <img src="./figures/denoise.gif" height=256 width=256 alt="NAFNet For Image Denoise"> | <img src="./figures/deblur.gif" height="256" alt="NAFNet For Image Deblur"> | <img src="./figures/StereoSR.gif" height="256" alt="NAFSSR For Stereo Image Super Resolution"> |
|
||||
| :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
|
||||
| Denoise | Deblur | StereoSR([NAFSSR](https://github.com/megvii-research/NAFNet/blob/main/docs/StereoSR.md)) |
|
||||
|
||||

|
||||
|
||||
### News
|
||||
|
|
Loading…
Reference in New Issue