import numpy as np import os import cv2 PATH = './datasets/SR/NTIRE22-StereoSR/Train' LR_FOLDER = 'LR_x4' HR_FOLDER = 'HR' lr_lists = [] hr_lists = [] cnt = 0 for idx in range(1, 801): L_name = f'{idx:04}_L.png' R_name = f'{idx:04}_R.png' LR_L = cv2.imread(os.path.join(PATH, LR_FOLDER, L_name)) LR_R = cv2.imread(os.path.join(PATH, LR_FOLDER, R_name)) HR_L = cv2.imread(os.path.join(PATH, HR_FOLDER, L_name)) HR_R = cv2.imread(os.path.join(PATH, HR_FOLDER, R_name)) LR = np.concatenate([LR_L, LR_R], axis=-1) HR = np.concatenate([HR_L, HR_R], axis=-1) lr_lists.append(LR) hr_lists.append(HR) cnt = cnt + 1 if cnt % 50 == 0: print(f'cnt .. {cnt}, idx: {idx}') import pickle with open('./datasets/ntire-stereo-sr.train.lr.pickle', 'wb') as f: pickle.dump(lr_lists, f) with open('./datasets/ntire-stereo-sr.train.hr.pickle', 'wb') as f: pickle.dump(hr_lists, f) # print(f'... {lr_all_np.shape}, {lr_all_np.dtype}') # print(f'... {hr_all_np.shape}, {hr_all_np.dtype}') # np.save('./datasets/ntire-stereo-sr.train.lr.npy', lr_all_np) # np.save('./datasets/ntire-stereo-sr.train.hr.npy', hr_all_np)