# ------------------------------------------------------------------------ # Copyright (c) 2022 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from BasicSR (https://github.com/xinntao/BasicSR) # Copyright 2018-2020 BasicSR Authors # ------------------------------------------------------------------------ import cv2 import numpy as np import os import sys from multiprocessing import Pool from os import path as osp from tqdm import tqdm from basicsr.utils import scandir from basicsr.utils.create_lmdb import create_lmdb_for_gopro def main(): opt = {} opt['n_thread'] = 20 opt['compression_level'] = 3 opt['input_folder'] = './datasets/GoPro/train/input' opt['save_folder'] = './datasets/GoPro/train/blur_crops' opt['crop_size'] = 512 opt['step'] = 256 opt['thresh_size'] = 0 extract_subimages(opt) opt['input_folder'] = './datasets/GoPro/train/target' opt['save_folder'] = './datasets/GoPro/train/sharp_crops' opt['crop_size'] = 512 opt['step'] = 256 opt['thresh_size'] = 0 extract_subimages(opt) create_lmdb_for_gopro() def extract_subimages(opt): """Crop images to subimages. Args: opt (dict): Configuration dict. It contains: input_folder (str): Path to the input folder. save_folder (str): Path to save folder. n_thread (int): Thread number. """ input_folder = opt['input_folder'] save_folder = opt['save_folder'] if not osp.exists(save_folder): os.makedirs(save_folder) print(f'mkdir {save_folder} ...') else: print(f'Folder {save_folder} already exists. Exit.') sys.exit(1) img_list = list(scandir(input_folder, full_path=True)) pbar = tqdm(total=len(img_list), unit='image', desc='Extract') pool = Pool(opt['n_thread']) for path in img_list: pool.apply_async( worker, args=(path, opt), callback=lambda arg: pbar.update(1)) pool.close() pool.join() pbar.close() print('All processes done.') def worker(path, opt): """Worker for each process. Args: path (str): Image path. opt (dict): Configuration dict. It contains: crop_size (int): Crop size. step (int): Step for overlapped sliding window. thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped. save_folder (str): Path to save folder. compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION. Returns: process_info (str): Process information displayed in progress bar. """ crop_size = opt['crop_size'] step = opt['step'] thresh_size = opt['thresh_size'] img_name, extension = osp.splitext(osp.basename(path)) # remove the x2, x3, x4 and x8 in the filename for DIV2K img_name = img_name.replace('x2', '').replace('x3', '').replace('x4', '').replace('x8', '') img = cv2.imread(path, cv2.IMREAD_UNCHANGED) if img.ndim == 2: h, w = img.shape elif img.ndim == 3: h, w, c = img.shape else: raise ValueError(f'Image ndim should be 2 or 3, but got {img.ndim}') h_space = np.arange(0, h - crop_size + 1, step) if h - (h_space[-1] + crop_size) > thresh_size: h_space = np.append(h_space, h - crop_size) w_space = np.arange(0, w - crop_size + 1, step) if w - (w_space[-1] + crop_size) > thresh_size: w_space = np.append(w_space, w - crop_size) index = 0 for x in h_space: for y in w_space: index += 1 cropped_img = img[x:x + crop_size, y:y + crop_size, ...] cropped_img = np.ascontiguousarray(cropped_img) cv2.imwrite( osp.join(opt['save_folder'], f'{img_name}_s{index:03d}{extension}'), cropped_img, [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) process_info = f'Processing {img_name} ...' return process_info if __name__ == '__main__': main()