136 lines
4.9 KiB
Python
136 lines
4.9 KiB
Python
# ------------------------------------------------------------------------
|
|
# Copyright (c) 2022 megvii-model. All Rights Reserved.
|
|
# ------------------------------------------------------------------------
|
|
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
|
|
# Copyright 2018-2020 BasicSR Authors
|
|
# ------------------------------------------------------------------------
|
|
|
|
import importlib
|
|
import numpy as np
|
|
import random
|
|
import torch
|
|
import torch.utils.data
|
|
from functools import partial
|
|
from os import path as osp
|
|
|
|
from basicsr.data.prefetch_dataloader import PrefetchDataLoader
|
|
from basicsr.utils import get_root_logger, scandir
|
|
from basicsr.utils.dist_util import get_dist_info
|
|
|
|
__all__ = ['create_dataset', 'create_dataloader']
|
|
|
|
# automatically scan and import dataset modules
|
|
# scan all the files under the data folder with '_dataset' in file names
|
|
data_folder = osp.dirname(osp.abspath(__file__))
|
|
dataset_filenames = [
|
|
osp.splitext(osp.basename(v))[0] for v in scandir(data_folder)
|
|
if v.endswith('_dataset.py')
|
|
]
|
|
# import all the dataset modules
|
|
_dataset_modules = [
|
|
importlib.import_module(f'basicsr.data.{file_name}')
|
|
for file_name in dataset_filenames
|
|
]
|
|
|
|
|
|
def create_dataset(dataset_opt):
|
|
"""Create dataset.
|
|
|
|
Args:
|
|
dataset_opt (dict): Configuration for dataset. It constains:
|
|
name (str): Dataset name.
|
|
type (str): Dataset type.
|
|
"""
|
|
dataset_type = dataset_opt['type']
|
|
|
|
# dynamic instantiation
|
|
for module in _dataset_modules:
|
|
dataset_cls = getattr(module, dataset_type, None)
|
|
if dataset_cls is not None:
|
|
break
|
|
if dataset_cls is None:
|
|
raise ValueError(f'Dataset {dataset_type} is not found.')
|
|
|
|
dataset = dataset_cls(dataset_opt)
|
|
|
|
logger = get_root_logger()
|
|
logger.info(
|
|
f'Dataset {dataset.__class__.__name__} - {dataset_opt["name"]} '
|
|
'is created.')
|
|
return dataset
|
|
|
|
|
|
def create_dataloader(dataset,
|
|
dataset_opt,
|
|
num_gpu=1,
|
|
dist=False,
|
|
sampler=None,
|
|
seed=None):
|
|
"""Create dataloader.
|
|
|
|
Args:
|
|
dataset (torch.utils.data.Dataset): Dataset.
|
|
dataset_opt (dict): Dataset options. It contains the following keys:
|
|
phase (str): 'train' or 'val'.
|
|
num_worker_per_gpu (int): Number of workers for each GPU.
|
|
batch_size_per_gpu (int): Training batch size for each GPU.
|
|
num_gpu (int): Number of GPUs. Used only in the train phase.
|
|
Default: 1.
|
|
dist (bool): Whether in distributed training. Used only in the train
|
|
phase. Default: False.
|
|
sampler (torch.utils.data.sampler): Data sampler. Default: None.
|
|
seed (int | None): Seed. Default: None
|
|
"""
|
|
phase = dataset_opt['phase']
|
|
rank, _ = get_dist_info()
|
|
if phase == 'train':
|
|
if dist: # distributed training
|
|
batch_size = dataset_opt['batch_size_per_gpu']
|
|
num_workers = dataset_opt['num_worker_per_gpu']
|
|
else: # non-distributed training
|
|
multiplier = 1 if num_gpu == 0 else num_gpu
|
|
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
|
|
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
|
|
dataloader_args = dict(
|
|
dataset=dataset,
|
|
batch_size=batch_size,
|
|
shuffle=False,
|
|
num_workers=num_workers,
|
|
sampler=sampler,
|
|
drop_last=True,
|
|
persistent_workers=True
|
|
)
|
|
if sampler is None:
|
|
dataloader_args['shuffle'] = True
|
|
dataloader_args['worker_init_fn'] = partial(
|
|
worker_init_fn, num_workers=num_workers, rank=rank,
|
|
seed=seed) if seed is not None else None
|
|
elif phase in ['val', 'test']: # validation
|
|
dataloader_args = dict(
|
|
dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
|
else:
|
|
raise ValueError(f'Wrong dataset phase: {phase}. '
|
|
"Supported ones are 'train', 'val' and 'test'.")
|
|
|
|
dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
|
|
|
|
prefetch_mode = dataset_opt.get('prefetch_mode')
|
|
if prefetch_mode == 'cpu': # CPUPrefetcher
|
|
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
|
|
logger = get_root_logger()
|
|
logger.info(f'Use {prefetch_mode} prefetch dataloader: '
|
|
f'num_prefetch_queue = {num_prefetch_queue}')
|
|
return PrefetchDataLoader(
|
|
num_prefetch_queue=num_prefetch_queue, **dataloader_args)
|
|
else:
|
|
# prefetch_mode=None: Normal dataloader
|
|
# prefetch_mode='cuda': dataloader for CUDAPrefetcher
|
|
return torch.utils.data.DataLoader(**dataloader_args)
|
|
|
|
|
|
def worker_init_fn(worker_id, num_workers, rank, seed):
|
|
# Set the worker seed to num_workers * rank + worker_id + seed
|
|
worker_seed = num_workers * rank + worker_id + seed
|
|
np.random.seed(worker_seed)
|
|
random.seed(worker_seed)
|