342 lines
13 KiB
Python
342 lines
13 KiB
Python
# ------------------------------------------------------------------------
|
|
# Copyright (c) 2022 megvii-model. All Rights Reserved.
|
|
# ------------------------------------------------------------------------
|
|
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
|
|
# Copyright 2018-2020 BasicSR Authors
|
|
# ------------------------------------------------------------------------
|
|
from torch.utils import data as data
|
|
from torchvision.transforms.functional import normalize, resize
|
|
|
|
from basicsr.data.data_util import (paired_paths_from_folder,
|
|
paired_paths_from_lmdb,
|
|
paired_paths_from_meta_info_file)
|
|
from basicsr.data.transforms import augment, paired_random_crop, paired_random_crop_hw
|
|
from basicsr.utils import FileClient, imfrombytes, img2tensor, padding
|
|
import os
|
|
import numpy as np
|
|
|
|
class PairedImageSRLRDataset(data.Dataset):
|
|
"""Paired image dataset for image restoration.
|
|
|
|
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and
|
|
GT image pairs.
|
|
|
|
There are three modes:
|
|
1. 'lmdb': Use lmdb files.
|
|
If opt['io_backend'] == lmdb.
|
|
2. 'meta_info_file': Use meta information file to generate paths.
|
|
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
|
|
3. 'folder': Scan folders to generate paths.
|
|
The rest.
|
|
|
|
Args:
|
|
opt (dict): Config for train datasets. It contains the following keys:
|
|
dataroot_gt (str): Data root path for gt.
|
|
dataroot_lq (str): Data root path for lq.
|
|
meta_info_file (str): Path for meta information file.
|
|
io_backend (dict): IO backend type and other kwarg.
|
|
filename_tmpl (str): Template for each filename. Note that the
|
|
template excludes the file extension. Default: '{}'.
|
|
gt_size (int): Cropped patched size for gt patches.
|
|
use_flip (bool): Use horizontal flips.
|
|
use_rot (bool): Use rotation (use vertical flip and transposing h
|
|
and w for implementation).
|
|
|
|
scale (bool): Scale, which will be added automatically.
|
|
phase (str): 'train' or 'val'.
|
|
"""
|
|
|
|
def __init__(self, opt):
|
|
super(PairedImageSRLRDataset, self).__init__()
|
|
self.opt = opt
|
|
# file client (io backend)
|
|
self.file_client = None
|
|
self.io_backend_opt = opt['io_backend']
|
|
self.mean = opt['mean'] if 'mean' in opt else None
|
|
self.std = opt['std'] if 'std' in opt else None
|
|
|
|
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
|
|
if 'filename_tmpl' in opt:
|
|
self.filename_tmpl = opt['filename_tmpl']
|
|
else:
|
|
self.filename_tmpl = '{}'
|
|
|
|
if self.io_backend_opt['type'] == 'lmdb':
|
|
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
|
|
self.io_backend_opt['client_keys'] = ['lq', 'gt']
|
|
self.paths = paired_paths_from_lmdb(
|
|
[self.lq_folder, self.gt_folder], ['lq', 'gt'])
|
|
elif 'meta_info_file' in self.opt and self.opt[
|
|
'meta_info_file'] is not None:
|
|
self.paths = paired_paths_from_meta_info_file(
|
|
[self.lq_folder, self.gt_folder], ['lq', 'gt'],
|
|
self.opt['meta_info_file'], self.filename_tmpl)
|
|
else:
|
|
import os
|
|
nums_lq = len(os.listdir(self.lq_folder))
|
|
nums_gt = len(os.listdir(self.gt_folder))
|
|
|
|
# nums_lq = sorted(nums_lq)
|
|
# nums_gt = sorted(nums_gt)
|
|
|
|
# print('lq gt ... opt')
|
|
# print(nums_lq, nums_gt, opt)
|
|
assert nums_gt == nums_lq
|
|
|
|
self.nums = nums_lq
|
|
# {:04}_L {:04}_R
|
|
|
|
|
|
# self.paths = paired_paths_from_folder(
|
|
# [self.lq_folder, self.gt_folder], ['lq', 'gt'],
|
|
# self.filename_tmpl)
|
|
|
|
def __getitem__(self, index):
|
|
if self.file_client is None:
|
|
self.file_client = FileClient(
|
|
self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
|
|
|
scale = self.opt['scale']
|
|
|
|
# Load gt and lq images. Dimension order: HWC; channel order: BGR;
|
|
# image range: [0, 1], float32.
|
|
# gt_path = self.paths[index]['gt_path']
|
|
|
|
gt_path_L = os.path.join(self.gt_folder, '{:04}_L.png'.format(index + 1))
|
|
gt_path_R = os.path.join(self.gt_folder, '{:04}_R.png'.format(index + 1))
|
|
|
|
|
|
# print('gt path,', gt_path)
|
|
img_bytes = self.file_client.get(gt_path_L, 'gt')
|
|
try:
|
|
img_gt_L = imfrombytes(img_bytes, float32=True)
|
|
except:
|
|
raise Exception("gt path {} not working".format(gt_path_L))
|
|
|
|
img_bytes = self.file_client.get(gt_path_R, 'gt')
|
|
try:
|
|
img_gt_R = imfrombytes(img_bytes, float32=True)
|
|
except:
|
|
raise Exception("gt path {} not working".format(gt_path_R))
|
|
|
|
|
|
lq_path_L = os.path.join(self.lq_folder, '{:04}_L.png'.format(index + 1))
|
|
lq_path_R = os.path.join(self.lq_folder, '{:04}_R.png'.format(index + 1))
|
|
|
|
# lq_path = self.paths[index]['lq_path']
|
|
# print(', lq path', lq_path)
|
|
img_bytes = self.file_client.get(lq_path_L, 'lq')
|
|
try:
|
|
img_lq_L = imfrombytes(img_bytes, float32=True)
|
|
except:
|
|
raise Exception("lq path {} not working".format(lq_path_L))
|
|
|
|
img_bytes = self.file_client.get(lq_path_R, 'lq')
|
|
try:
|
|
img_lq_R = imfrombytes(img_bytes, float32=True)
|
|
except:
|
|
raise Exception("lq path {} not working".format(lq_path_R))
|
|
|
|
|
|
|
|
img_gt = np.concatenate([img_gt_L, img_gt_R], axis=-1)
|
|
img_lq = np.concatenate([img_lq_L, img_lq_R], axis=-1)
|
|
|
|
# augmentation for training
|
|
if self.opt['phase'] == 'train':
|
|
gt_size = self.opt['gt_size']
|
|
# padding
|
|
img_gt, img_lq = padding(img_gt, img_lq, gt_size)
|
|
|
|
# random crop
|
|
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
|
|
gt_path_L)
|
|
# flip, rotation
|
|
img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_flip'],
|
|
self.opt['use_rot'])
|
|
|
|
# TODO: color space transform
|
|
# BGR to RGB, HWC to CHW, numpy to tensor
|
|
img_gt, img_lq = img2tensor([img_gt, img_lq],
|
|
bgr2rgb=True,
|
|
float32=True)
|
|
# normalize
|
|
if self.mean is not None or self.std is not None:
|
|
normalize(img_lq, self.mean, self.std, inplace=True)
|
|
normalize(img_gt, self.mean, self.std, inplace=True)
|
|
|
|
# if scale != 1:
|
|
# c, h, w = img_lq.shape
|
|
# img_lq = resize(img_lq, [h*scale, w*scale])
|
|
# print('img_lq .. ', img_lq.shape, img_gt.shape)
|
|
|
|
|
|
return {
|
|
'lq': img_lq,
|
|
'gt': img_gt,
|
|
'lq_path': f'{index+1:04}',
|
|
'gt_path': f'{index+1:04}',
|
|
}
|
|
|
|
def __len__(self):
|
|
return self.nums // 2
|
|
|
|
|
|
class PairedStereoImageDataset(data.Dataset):
|
|
def __init__(self, opt):
|
|
super(PairedStereoImageDataset, self).__init__()
|
|
self.opt = opt
|
|
# file client (io backend)
|
|
self.file_client = None
|
|
self.io_backend_opt = opt['io_backend']
|
|
self.mean = opt['mean'] if 'mean' in opt else None
|
|
self.std = opt['std'] if 'std' in opt else None
|
|
|
|
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
|
|
if 'filename_tmpl' in opt:
|
|
self.filename_tmpl = opt['filename_tmpl']
|
|
else:
|
|
self.filename_tmpl = '{}'
|
|
|
|
assert self.io_backend_opt['type'] == 'disk'
|
|
import os
|
|
self.lq_files = os.listdir(self.lq_folder)
|
|
self.gt_files = os.listdir(self.gt_folder)
|
|
|
|
self.nums = len(self.gt_files)
|
|
|
|
def __getitem__(self, index):
|
|
if self.file_client is None:
|
|
self.file_client = FileClient(
|
|
self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
|
|
|
gt_path_L = os.path.join(self.gt_folder, self.gt_files[index], 'hr0.png')
|
|
gt_path_R = os.path.join(self.gt_folder, self.gt_files[index], 'hr1.png')
|
|
|
|
img_bytes = self.file_client.get(gt_path_L, 'gt')
|
|
try:
|
|
img_gt_L = imfrombytes(img_bytes, float32=True)
|
|
except:
|
|
raise Exception("gt path {} not working".format(gt_path_L))
|
|
|
|
img_bytes = self.file_client.get(gt_path_R, 'gt')
|
|
try:
|
|
img_gt_R = imfrombytes(img_bytes, float32=True)
|
|
except:
|
|
raise Exception("gt path {} not working".format(gt_path_R))
|
|
|
|
lq_path_L = os.path.join(self.lq_folder, self.lq_files[index], 'lr0.png')
|
|
lq_path_R = os.path.join(self.lq_folder, self.lq_files[index], 'lr1.png')
|
|
|
|
# lq_path = self.paths[index]['lq_path']
|
|
# print(', lq path', lq_path)
|
|
img_bytes = self.file_client.get(lq_path_L, 'lq')
|
|
try:
|
|
img_lq_L = imfrombytes(img_bytes, float32=True)
|
|
except:
|
|
raise Exception("lq path {} not working".format(lq_path_L))
|
|
|
|
img_bytes = self.file_client.get(lq_path_R, 'lq')
|
|
try:
|
|
img_lq_R = imfrombytes(img_bytes, float32=True)
|
|
except:
|
|
raise Exception("lq path {} not working".format(lq_path_R))
|
|
|
|
img_gt = np.concatenate([img_gt_L, img_gt_R], axis=-1)
|
|
img_lq = np.concatenate([img_lq_L, img_lq_R], axis=-1)
|
|
|
|
scale = self.opt['scale']
|
|
# augmentation for training
|
|
if self.opt['phase'] == 'train':
|
|
if 'gt_size_h' in self.opt and 'gt_size_w' in self.opt:
|
|
gt_size_h = int(self.opt['gt_size_h'])
|
|
gt_size_w = int(self.opt['gt_size_w'])
|
|
else:
|
|
gt_size = int(self.opt['gt_size'])
|
|
gt_size_h, gt_size_w = gt_size, gt_size
|
|
|
|
|
|
if 'flip_LR' in self.opt and self.opt['flip_LR']:
|
|
if np.random.rand() < 0.5:
|
|
img_gt = img_gt[:, :, [3, 4, 5, 0, 1, 2]]
|
|
img_lq = img_lq[:, :, [3, 4, 5, 0, 1, 2]]
|
|
|
|
# img_gt, img_lq
|
|
|
|
if 'flip_RGB' in self.opt and self.opt['flip_RGB']:
|
|
idx = [
|
|
[0, 1, 2, 3, 4, 5],
|
|
[0, 2, 1, 3, 5, 4],
|
|
[1, 0, 2, 4, 3, 5],
|
|
[1, 2, 0, 4, 5, 3],
|
|
[2, 0, 1, 5, 3, 4],
|
|
[2, 1, 0, 5, 4, 3],
|
|
][int(np.random.rand() * 6)]
|
|
|
|
img_gt = img_gt[:, :, idx]
|
|
img_lq = img_lq[:, :, idx]
|
|
|
|
if 'inverse_RGB' in self.opt and self.opt['inverse_RGB']:
|
|
for i in range(3):
|
|
if np.random.rand() < 0.5:
|
|
img_gt[:, :, i] = 1 - img_gt[:, :, i]
|
|
img_gt[:, :, i+3] = 1 - img_gt[:, :, i+3]
|
|
img_lq[:, :, i] = 1 - img_lq[:, :, i]
|
|
img_lq[:, :, i+3] = 1 - img_lq[:, :, i+3]
|
|
|
|
if 'naive_inverse_RGB' in self.opt and self.opt['naive_inverse_RGB']:
|
|
# for i in range(3):
|
|
if np.random.rand() < 0.5:
|
|
img_gt = 1 - img_gt
|
|
img_lq = 1 - img_lq
|
|
# img_gt[:, :, i] = 1 - img_gt[:, :, i]
|
|
# img_gt[:, :, i+3] = 1 - img_gt[:, :, i+3]
|
|
# img_lq[:, :, i] = 1 - img_lq[:, :, i]
|
|
# img_lq[:, :, i+3] = 1 - img_lq[:, :, i+3]
|
|
|
|
if 'random_offset' in self.opt and self.opt['random_offset'] > 0:
|
|
# if np.random.rand() < 0.9:
|
|
S = int(self.opt['random_offset'])
|
|
|
|
offsets = int(np.random.rand() * (S+1)) #1~S
|
|
s2, s4 = 0, 0
|
|
|
|
if np.random.rand() < 0.5:
|
|
s2 = offsets
|
|
else:
|
|
s4 = offsets
|
|
|
|
_, w, _ = img_lq.shape
|
|
|
|
img_lq = np.concatenate([img_lq[:, s2:w-s4, :3], img_lq[:, s4:w-s2, 3:]], axis=-1)
|
|
img_gt = np.concatenate(
|
|
[img_gt[:, 4 * s2:4*w-4 * s4, :3], img_gt[:, 4 * s4:4*w-4 * s2, 3:]], axis=-1)
|
|
|
|
# random crop
|
|
img_gt, img_lq = img_gt.copy(), img_lq.copy()
|
|
img_gt, img_lq = paired_random_crop_hw(img_gt, img_lq, gt_size_h, gt_size_w, scale,
|
|
'gt_path_L_and_R')
|
|
# flip, rotation
|
|
imgs, status = augment([img_gt, img_lq], self.opt['use_hflip'],
|
|
self.opt['use_rot'], vflip=self.opt['use_vflip'], return_status=True)
|
|
|
|
|
|
img_gt, img_lq = imgs
|
|
|
|
img_gt, img_lq = img2tensor([img_gt, img_lq],
|
|
bgr2rgb=True,
|
|
float32=True)
|
|
# normalize
|
|
if self.mean is not None or self.std is not None:
|
|
normalize(img_lq, self.mean, self.std, inplace=True)
|
|
normalize(img_gt, self.mean, self.std, inplace=True)
|
|
|
|
return {
|
|
'lq': img_lq,
|
|
'gt': img_gt,
|
|
'lq_path': os.path.join(self.lq_folder, self.lq_files[index]),
|
|
'gt_path': os.path.join(self.gt_folder, self.gt_files[index]),
|
|
}
|
|
|
|
def __len__(self):
|
|
return self.nums |