190 lines
6.5 KiB
Python
190 lines
6.5 KiB
Python
# ------------------------------------------------------------------------
|
|
# Copyright (c) 2022 megvii-model. All Rights Reserved.
|
|
# ------------------------------------------------------------------------
|
|
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
|
|
# Copyright 2018-2020 BasicSR Authors
|
|
# ------------------------------------------------------------------------
|
|
import math
|
|
from collections import Counter
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
|
|
class MultiStepRestartLR(_LRScheduler):
|
|
""" MultiStep with restarts learning rate scheme.
|
|
|
|
Args:
|
|
optimizer (torch.nn.optimizer): Torch optimizer.
|
|
milestones (list): Iterations that will decrease learning rate.
|
|
gamma (float): Decrease ratio. Default: 0.1.
|
|
restarts (list): Restart iterations. Default: [0].
|
|
restart_weights (list): Restart weights at each restart iteration.
|
|
Default: [1].
|
|
last_epoch (int): Used in _LRScheduler. Default: -1.
|
|
"""
|
|
|
|
def __init__(self,
|
|
optimizer,
|
|
milestones,
|
|
gamma=0.1,
|
|
restarts=(0, ),
|
|
restart_weights=(1, ),
|
|
last_epoch=-1):
|
|
self.milestones = Counter(milestones)
|
|
self.gamma = gamma
|
|
self.restarts = restarts
|
|
self.restart_weights = restart_weights
|
|
assert len(self.restarts) == len(
|
|
self.restart_weights), 'restarts and their weights do not match.'
|
|
super(MultiStepRestartLR, self).__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch in self.restarts:
|
|
weight = self.restart_weights[self.restarts.index(self.last_epoch)]
|
|
return [
|
|
group['initial_lr'] * weight
|
|
for group in self.optimizer.param_groups
|
|
]
|
|
if self.last_epoch not in self.milestones:
|
|
return [group['lr'] for group in self.optimizer.param_groups]
|
|
return [
|
|
group['lr'] * self.gamma**self.milestones[self.last_epoch]
|
|
for group in self.optimizer.param_groups
|
|
]
|
|
|
|
class LinearLR(_LRScheduler):
|
|
"""
|
|
|
|
Args:
|
|
optimizer (torch.nn.optimizer): Torch optimizer.
|
|
milestones (list): Iterations that will decrease learning rate.
|
|
gamma (float): Decrease ratio. Default: 0.1.
|
|
last_epoch (int): Used in _LRScheduler. Default: -1.
|
|
"""
|
|
|
|
def __init__(self,
|
|
optimizer,
|
|
total_iter,
|
|
last_epoch=-1):
|
|
self.total_iter = total_iter
|
|
super(LinearLR, self).__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self):
|
|
process = self.last_epoch / self.total_iter
|
|
weight = (1 - process)
|
|
# print('get lr ', [weight * group['initial_lr'] for group in self.optimizer.param_groups])
|
|
return [weight * group['initial_lr'] for group in self.optimizer.param_groups]
|
|
|
|
class VibrateLR(_LRScheduler):
|
|
"""
|
|
|
|
Args:
|
|
optimizer (torch.nn.optimizer): Torch optimizer.
|
|
milestones (list): Iterations that will decrease learning rate.
|
|
gamma (float): Decrease ratio. Default: 0.1.
|
|
last_epoch (int): Used in _LRScheduler. Default: -1.
|
|
"""
|
|
|
|
def __init__(self,
|
|
optimizer,
|
|
total_iter,
|
|
last_epoch=-1):
|
|
self.total_iter = total_iter
|
|
super(VibrateLR, self).__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self):
|
|
process = self.last_epoch / self.total_iter
|
|
|
|
f = 0.1
|
|
if process < 3 / 8:
|
|
f = 1 - process * 8 / 3
|
|
elif process < 5 / 8:
|
|
f = 0.2
|
|
|
|
T = self.total_iter // 80
|
|
Th = T // 2
|
|
|
|
t = self.last_epoch % T
|
|
|
|
f2 = t / Th
|
|
if t >= Th:
|
|
f2 = 2 - f2
|
|
|
|
weight = f * f2
|
|
|
|
if self.last_epoch < Th:
|
|
weight = max(0.1, weight)
|
|
|
|
# print('f {}, T {}, Th {}, t {}, f2 {}'.format(f, T, Th, t, f2))
|
|
return [weight * group['initial_lr'] for group in self.optimizer.param_groups]
|
|
|
|
def get_position_from_periods(iteration, cumulative_period):
|
|
"""Get the position from a period list.
|
|
|
|
It will return the index of the right-closest number in the period list.
|
|
For example, the cumulative_period = [100, 200, 300, 400],
|
|
if iteration == 50, return 0;
|
|
if iteration == 210, return 2;
|
|
if iteration == 300, return 2.
|
|
|
|
Args:
|
|
iteration (int): Current iteration.
|
|
cumulative_period (list[int]): Cumulative period list.
|
|
|
|
Returns:
|
|
int: The position of the right-closest number in the period list.
|
|
"""
|
|
for i, period in enumerate(cumulative_period):
|
|
if iteration <= period:
|
|
return i
|
|
|
|
|
|
class CosineAnnealingRestartLR(_LRScheduler):
|
|
""" Cosine annealing with restarts learning rate scheme.
|
|
|
|
An example of config:
|
|
periods = [10, 10, 10, 10]
|
|
restart_weights = [1, 0.5, 0.5, 0.5]
|
|
eta_min=1e-7
|
|
|
|
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the
|
|
scheduler will restart with the weights in restart_weights.
|
|
|
|
Args:
|
|
optimizer (torch.nn.optimizer): Torch optimizer.
|
|
periods (list): Period for each cosine anneling cycle.
|
|
restart_weights (list): Restart weights at each restart iteration.
|
|
Default: [1].
|
|
eta_min (float): The mimimum lr. Default: 0.
|
|
last_epoch (int): Used in _LRScheduler. Default: -1.
|
|
"""
|
|
|
|
def __init__(self,
|
|
optimizer,
|
|
periods,
|
|
restart_weights=(1, ),
|
|
eta_min=0,
|
|
last_epoch=-1):
|
|
self.periods = periods
|
|
self.restart_weights = restart_weights
|
|
self.eta_min = eta_min
|
|
assert (len(self.periods) == len(self.restart_weights)
|
|
), 'periods and restart_weights should have the same length.'
|
|
self.cumulative_period = [
|
|
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
|
|
]
|
|
super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self):
|
|
idx = get_position_from_periods(self.last_epoch,
|
|
self.cumulative_period)
|
|
current_weight = self.restart_weights[idx]
|
|
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1]
|
|
current_period = self.periods[idx]
|
|
|
|
return [
|
|
self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) *
|
|
(1 + math.cos(math.pi * (
|
|
(self.last_epoch - nearest_restart) / current_period)))
|
|
for base_lr in self.base_lrs
|
|
]
|