NAFNet/basicsr/train.py

296 lines
12 KiB
Python

# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
# Copyright 2018-2020 BasicSR Authors
# ------------------------------------------------------------------------
import argparse
import datetime
import logging
import math
import random
import time
import torch
from os import path as osp
from basicsr.data import create_dataloader, create_dataset
from basicsr.data.data_sampler import EnlargedSampler
from basicsr.data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher
from basicsr.models import create_model
from basicsr.utils import (MessageLogger, check_resume, get_env_info,
get_root_logger, get_time_str, init_tb_logger,
init_wandb_logger, make_exp_dirs, mkdir_and_rename,
set_random_seed)
from basicsr.utils.dist_util import get_dist_info, init_dist
from basicsr.utils.options import dict2str, parse
def parse_options(is_train=True):
parser = argparse.ArgumentParser()
parser.add_argument(
'-opt', type=str, required=True, help='Path to option YAML file.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = parse(args.opt, is_train=is_train)
# distributed settings
if args.launcher == 'none':
opt['dist'] = False
print('Disable distributed.', flush=True)
else:
opt['dist'] = True
if args.launcher == 'slurm' and 'dist_params' in opt:
init_dist(args.launcher, **opt['dist_params'])
else:
init_dist(args.launcher)
print('init dist .. ', args.launcher)
opt['rank'], opt['world_size'] = get_dist_info()
# random seed
seed = opt.get('manual_seed')
if seed is None:
seed = random.randint(1, 10000)
opt['manual_seed'] = seed
set_random_seed(seed + opt['rank'])
return opt
def init_loggers(opt):
log_file = osp.join(opt['path']['log'],
f"train_{opt['name']}_{get_time_str()}.log")
logger = get_root_logger(
logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(opt))
# initialize wandb logger before tensorboard logger to allow proper sync:
if (opt['logger'].get('wandb')
is not None) and (opt['logger']['wandb'].get('project')
is not None) and ('debug' not in opt['name']):
assert opt['logger'].get('use_tb_logger') is True, (
'should turn on tensorboard when using wandb')
init_wandb_logger(opt)
tb_logger = None
if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']:
# tb_logger = init_tb_logger(log_dir=f'./logs/{opt['name']}') #mkdir logs @CLY
tb_logger = init_tb_logger(log_dir=osp.join('logs', opt['name']))
return logger, tb_logger
def create_train_val_dataloader(opt, logger):
# create train and val dataloaders
train_loader, val_loader = None, None
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
train_set = create_dataset(dataset_opt)
train_sampler = EnlargedSampler(train_set, opt['world_size'],
opt['rank'], dataset_enlarge_ratio)
train_loader = create_dataloader(
train_set,
dataset_opt,
num_gpu=opt['num_gpu'],
dist=opt['dist'],
sampler=train_sampler,
seed=opt['manual_seed'])
num_iter_per_epoch = math.ceil(
len(train_set) * dataset_enlarge_ratio /
(dataset_opt['batch_size_per_gpu'] * opt['world_size']))
total_iters = int(opt['train']['total_iter'])
total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
logger.info(
'Training statistics:'
f'\n\tNumber of train images: {len(train_set)}'
f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
f'\n\tWorld size (gpu number): {opt["world_size"]}'
f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')
elif phase == 'val':
val_set = create_dataset(dataset_opt)
val_loader = create_dataloader(
val_set,
dataset_opt,
num_gpu=opt['num_gpu'],
dist=opt['dist'],
sampler=None,
seed=opt['manual_seed'])
logger.info(
f'Number of val images/folders in {dataset_opt["name"]}: '
f'{len(val_set)}')
else:
raise ValueError(f'Dataset phase {phase} is not recognized.')
return train_loader, train_sampler, val_loader, total_epochs, total_iters
def main():
# parse options, set distributed setting, set ramdom seed
opt = parse_options(is_train=True)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# automatic resume ..
state_folder_path = 'experiments/{}/training_states/'.format(opt['name'])
import os
try:
states = os.listdir(state_folder_path)
except:
states = []
resume_state = None
if len(states) > 0:
print('!!!!!! resume state .. ', states, state_folder_path)
max_state_file = '{}.state'.format(max([int(x[0:-6]) for x in states]))
resume_state = os.path.join(state_folder_path, max_state_file)
opt['path']['resume_state'] = resume_state
# load resume states if necessary
if opt['path'].get('resume_state'):
device_id = torch.cuda.current_device()
resume_state = torch.load(
opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
else:
resume_state = None
# mkdir for experiments and logger
if resume_state is None:
make_exp_dirs(opt)
if opt['logger'].get('use_tb_logger') and 'debug' not in opt[
'name'] and opt['rank'] == 0:
mkdir_and_rename(osp.join('tb_logger', opt['name']))
# initialize loggers
logger, tb_logger = init_loggers(opt)
# create train and validation dataloaders
result = create_train_val_dataloader(opt, logger)
train_loader, train_sampler, val_loader, total_epochs, total_iters = result
# create model
if resume_state: # resume training
check_resume(opt, resume_state['iter'])
model = create_model(opt)
model.resume_training(resume_state) # handle optimizers and schedulers
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, "
f"iter: {resume_state['iter']}.")
start_epoch = resume_state['epoch']
current_iter = resume_state['iter']
else:
model = create_model(opt)
start_epoch = 0
current_iter = 0
# create message logger (formatted outputs)
msg_logger = MessageLogger(opt, current_iter, tb_logger)
# dataloader prefetcher
prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
if prefetch_mode is None or prefetch_mode == 'cpu':
prefetcher = CPUPrefetcher(train_loader)
elif prefetch_mode == 'cuda':
prefetcher = CUDAPrefetcher(train_loader, opt)
logger.info(f'Use {prefetch_mode} prefetch dataloader')
if opt['datasets']['train'].get('pin_memory') is not True:
raise ValueError('Please set pin_memory=True for CUDAPrefetcher.')
else:
raise ValueError(f'Wrong prefetch_mode {prefetch_mode}.'
"Supported ones are: None, 'cuda', 'cpu'.")
# training
logger.info(
f'Start training from epoch: {start_epoch}, iter: {current_iter}')
data_time, iter_time = time.time(), time.time()
start_time = time.time()
# for epoch in range(start_epoch, total_epochs + 1):
epoch = start_epoch
while current_iter <= total_iters:
train_sampler.set_epoch(epoch)
prefetcher.reset()
train_data = prefetcher.next()
while train_data is not None:
data_time = time.time() - data_time
current_iter += 1
if current_iter > total_iters:
break
# update learning rate
model.update_learning_rate(
current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
# training
model.feed_data(train_data, is_val=False)
result_code = model.optimize_parameters(current_iter, tb_logger)
# if result_code == -1 and tb_logger:
# print('loss explode .. ')
# exit(0)
iter_time = time.time() - iter_time
# log
if current_iter % opt['logger']['print_freq'] == 0:
log_vars = {'epoch': epoch, 'iter': current_iter, 'total_iter': total_iters}
log_vars.update({'lrs': model.get_current_learning_rate()})
log_vars.update({'time': iter_time, 'data_time': data_time})
log_vars.update(model.get_current_log())
# print('msg logger .. ', current_iter)
msg_logger(log_vars)
# save models and training states
if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
logger.info('Saving models and training states.')
model.save(epoch, current_iter)
# validation
if opt.get('val') is not None and (current_iter % opt['val']['val_freq'] == 0 or current_iter == 1000):
# if opt.get('val') is not None and (current_iter % opt['val']['val_freq'] == 0):
rgb2bgr = opt['val'].get('rgb2bgr', True)
# wheather use uint8 image to compute metrics
use_image = opt['val'].get('use_image', True)
model.validation(val_loader, current_iter, tb_logger,
opt['val']['save_img'], rgb2bgr, use_image )
log_vars = {'epoch': epoch, 'iter': current_iter, 'total_iter': total_iters}
log_vars.update({'lrs': model.get_current_learning_rate()})
log_vars.update(model.get_current_log())
msg_logger(log_vars)
data_time = time.time()
iter_time = time.time()
train_data = prefetcher.next()
# end of iter
epoch += 1
# end of epoch
consumed_time = str(
datetime.timedelta(seconds=int(time.time() - start_time)))
logger.info(f'End of training. Time consumed: {consumed_time}')
logger.info('Save the latest model.')
model.save(epoch=-1, current_iter=-1) # -1 stands for the latest
if opt.get('val') is not None:
rgb2bgr = opt['val'].get('rgb2bgr', True)
use_image = opt['val'].get('use_image', True)
metric = model.validation(val_loader, current_iter, tb_logger,
opt['val']['save_img'], rgb2bgr, use_image)
# if tb_logger:
# print('xxresult! ', opt['name'], ' ', metric)
if tb_logger:
tb_logger.close()
if __name__ == '__main__':
import os
os.environ['GRPC_POLL_STRATEGY']='epoll1'
main()