NAFNet/basicsr/models/archs/NAFSSR_arch.py

171 lines
5.9 KiB
Python

# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
'''
NAFSSR: Stereo Image Super-Resolution Using NAFNet
@InProceedings{Chu2022NAFSSR,
author = {Xiaojie Chu and Liangyu Chen and Wenqing Yu},
title = {NAFSSR: Stereo Image Super-Resolution Using NAFNet},
booktitle = {CVPRW},
year = {2022},
}
'''
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from basicsr.models.archs.NAFNet_arch import LayerNorm2d, NAFBlock
from basicsr.models.archs.arch_util import MySequential
from basicsr.models.archs.local_arch import Local_Base
class SCAM(nn.Module):
'''
Stereo Cross Attention Module (SCAM)
'''
def __init__(self, c):
super().__init__()
self.scale = c ** -0.5
self.norm_l = LayerNorm2d(c)
self.norm_r = LayerNorm2d(c)
self.l_proj1 = nn.Conv2d(c, c, kernel_size=1, stride=1, padding=0)
self.r_proj1 = nn.Conv2d(c, c, kernel_size=1, stride=1, padding=0)
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.l_proj2 = nn.Conv2d(c, c, kernel_size=1, stride=1, padding=0)
self.r_proj2 = nn.Conv2d(c, c, kernel_size=1, stride=1, padding=0)
def forward(self, x_l, x_r):
Q_l = self.l_proj1(self.norm_l(x_l)).permute(0, 2, 3, 1) # B, H, W, c
Q_r_T = self.r_proj1(self.norm_r(x_r)).permute(0, 2, 1, 3) # B, H, c, W (transposed)
V_l = self.l_proj2(x_l).permute(0, 2, 3, 1) # B, H, W, c
V_r = self.r_proj2(x_r).permute(0, 2, 3, 1) # B, H, W, c
# (B, H, W, c) x (B, H, c, W) -> (B, H, W, W)
attention = torch.matmul(Q_l, Q_r_T) * self.scale
F_r2l = torch.matmul(torch.softmax(attention, dim=-1), V_r) #B, H, W, c
F_l2r = torch.matmul(torch.softmax(attention.permute(0, 1, 3, 2), dim=-1), V_l) #B, H, W, c
# scale
F_r2l = F_r2l.permute(0, 3, 1, 2) * self.beta
F_l2r = F_l2r.permute(0, 3, 1, 2) * self.gamma
return x_l + F_r2l, x_r + F_l2r
class DropPath(nn.Module):
def __init__(self, drop_rate, module):
super().__init__()
self.drop_rate = drop_rate
self.module = module
def forward(self, *feats):
if self.training and np.random.rand() < self.drop_rate:
return feats
new_feats = self.module(*feats)
factor = 1. / (1 - self.drop_rate) if self.training else 1.
if self.training and factor != 1.:
new_feats = tuple([x+factor*(new_x-x) for x, new_x in zip(feats, new_feats)])
return new_feats
class NAFBlockSR(nn.Module):
'''
NAFBlock for Super-Resolution
'''
def __init__(self, c, fusion=False, drop_out_rate=0.):
super().__init__()
self.blk = NAFBlock(c, drop_out_rate=drop_out_rate)
self.fusion = SCAM(c) if fusion else None
def forward(self, *feats):
feats = tuple([self.blk(x) for x in feats])
if self.fusion:
feats = self.fusion(*feats)
return feats
class NAFNetSR(nn.Module):
'''
NAFNet for Super-Resolution
'''
def __init__(self, up_scale=4, width=48, num_blks=16, img_channel=3, drop_path_rate=0., drop_out_rate=0., fusion_from=-1, fusion_to=-1, dual=False):
super().__init__()
self.dual = dual # dual input for stereo SR (left view, right view)
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.body = MySequential(
*[DropPath(
drop_path_rate,
NAFBlockSR(
width,
fusion=(fusion_from <= i and i <= fusion_to),
drop_out_rate=drop_out_rate
)) for i in range(num_blks)]
)
self.up = nn.Sequential(
nn.Conv2d(in_channels=width, out_channels=img_channel * up_scale**2, kernel_size=3, padding=1, stride=1, groups=1, bias=True),
nn.PixelShuffle(up_scale)
)
self.up_scale = up_scale
def forward(self, inp):
inp_hr = F.interpolate(inp, scale_factor=self.up_scale, mode='bilinear')
if self.dual:
inp = inp.chunk(2, dim=1)
else:
inp = (inp, )
feats = [self.intro(x) for x in inp]
feats = self.body(*feats)
out = torch.cat([self.up(x) for x in feats], dim=1)
out = out + inp_hr
return out
class NAFSSR(Local_Base, NAFNetSR):
def __init__(self, *args, train_size=(1, 6, 30, 90), fast_imp=False, fusion_from=-1, fusion_to=1000, **kwargs):
Local_Base.__init__(self)
NAFNetSR.__init__(self, *args, img_channel=3, fusion_from=fusion_from, fusion_to=fusion_to, dual=True, **kwargs)
N, C, H, W = train_size
base_size = (int(H * 1.5), int(W * 1.5))
self.eval()
with torch.no_grad():
self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp)
if __name__ == '__main__':
num_blks = 128
width = 128
droppath=0.1
train_size = (1, 6, 30, 90)
net = NAFSSR(up_scale=2,train_size=train_size, fast_imp=True, width=width, num_blks=num_blks, drop_path_rate=droppath)
inp_shape = (6, 64, 64)
from ptflops import get_model_complexity_info
FLOPS = 0
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)
# params = float(params[:-4])
print(params)
macs = float(macs[:-4]) + FLOPS / 10 ** 9
print('mac', macs, params)
# from basicsr.models.archs.arch_util import measure_inference_speed
# net = net.cuda()
# data = torch.randn((1, 6, 128, 128)).cuda()
# measure_inference_speed(net, (data,))