NAFNet/basicsr/data/paired_image_SR_LR_dataset.py

301 lines
11 KiB
Python

# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from BasicSR (https://github.com/xinntao/BasicSR)
# Copyright 2018-2020 BasicSR Authors
# ------------------------------------------------------------------------
from torch.utils import data as data
from torchvision.transforms.functional import normalize, resize
from basicsr.data.data_util import (paired_paths_from_folder,
paired_paths_from_lmdb,
paired_paths_from_meta_info_file)
from basicsr.data.transforms import augment, paired_random_crop, paired_random_crop_hw
from basicsr.utils import FileClient, imfrombytes, img2tensor, padding
import os
import numpy as np
class PairedImageSRLRDataset(data.Dataset):
"""Paired image dataset for image restoration.
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and
GT image pairs.
There are three modes:
1. 'lmdb': Use lmdb files.
If opt['io_backend'] == lmdb.
2. 'meta_info_file': Use meta information file to generate paths.
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
3. 'folder': Scan folders to generate paths.
The rest.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_lq (str): Data root path for lq.
meta_info_file (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
filename_tmpl (str): Template for each filename. Note that the
template excludes the file extension. Default: '{}'.
gt_size (int): Cropped patched size for gt patches.
use_flip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h
and w for implementation).
scale (bool): Scale, which will be added automatically.
phase (str): 'train' or 'val'.
"""
def __init__(self, opt):
super(PairedImageSRLRDataset, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
if 'filename_tmpl' in opt:
self.filename_tmpl = opt['filename_tmpl']
else:
self.filename_tmpl = '{}'
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
self.io_backend_opt['client_keys'] = ['lq', 'gt']
self.paths = paired_paths_from_lmdb(
[self.lq_folder, self.gt_folder], ['lq', 'gt'])
elif 'meta_info_file' in self.opt and self.opt[
'meta_info_file'] is not None:
self.paths = paired_paths_from_meta_info_file(
[self.lq_folder, self.gt_folder], ['lq', 'gt'],
self.opt['meta_info_file'], self.filename_tmpl)
else:
import os
nums_lq = len(os.listdir(self.lq_folder))
nums_gt = len(os.listdir(self.gt_folder))
# nums_lq = sorted(nums_lq)
# nums_gt = sorted(nums_gt)
# print('lq gt ... opt')
# print(nums_lq, nums_gt, opt)
assert nums_gt == nums_lq
self.nums = nums_lq
# {:04}_L {:04}_R
# self.paths = paired_paths_from_folder(
# [self.lq_folder, self.gt_folder], ['lq', 'gt'],
# self.filename_tmpl)
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
scale = self.opt['scale']
# Load gt and lq images. Dimension order: HWC; channel order: BGR;
# image range: [0, 1], float32.
# gt_path = self.paths[index]['gt_path']
gt_path_L = os.path.join(self.gt_folder, '{:04}_L.png'.format(index + 1))
gt_path_R = os.path.join(self.gt_folder, '{:04}_R.png'.format(index + 1))
# print('gt path,', gt_path)
img_bytes = self.file_client.get(gt_path_L, 'gt')
try:
img_gt_L = imfrombytes(img_bytes, float32=True)
except:
raise Exception("gt path {} not working".format(gt_path_L))
img_bytes = self.file_client.get(gt_path_R, 'gt')
try:
img_gt_R = imfrombytes(img_bytes, float32=True)
except:
raise Exception("gt path {} not working".format(gt_path_R))
lq_path_L = os.path.join(self.lq_folder, '{:04}_L.png'.format(index + 1))
lq_path_R = os.path.join(self.lq_folder, '{:04}_R.png'.format(index + 1))
# lq_path = self.paths[index]['lq_path']
# print(', lq path', lq_path)
img_bytes = self.file_client.get(lq_path_L, 'lq')
try:
img_lq_L = imfrombytes(img_bytes, float32=True)
except:
raise Exception("lq path {} not working".format(lq_path_L))
img_bytes = self.file_client.get(lq_path_R, 'lq')
try:
img_lq_R = imfrombytes(img_bytes, float32=True)
except:
raise Exception("lq path {} not working".format(lq_path_R))
img_gt = np.concatenate([img_gt_L, img_gt_R], axis=-1)
img_lq = np.concatenate([img_lq_L, img_lq_R], axis=-1)
# augmentation for training
if self.opt['phase'] == 'train':
gt_size = self.opt['gt_size']
# padding
img_gt, img_lq = padding(img_gt, img_lq, gt_size)
# random crop
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
gt_path_L)
# flip, rotation
img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_flip'],
self.opt['use_rot'])
# TODO: color space transform
# BGR to RGB, HWC to CHW, numpy to tensor
img_gt, img_lq = img2tensor([img_gt, img_lq],
bgr2rgb=True,
float32=True)
# normalize
if self.mean is not None or self.std is not None:
normalize(img_lq, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
# if scale != 1:
# c, h, w = img_lq.shape
# img_lq = resize(img_lq, [h*scale, w*scale])
# print('img_lq .. ', img_lq.shape, img_gt.shape)
return {
'lq': img_lq,
'gt': img_gt,
'lq_path': f'{index+1:04}',
'gt_path': f'{index+1:04}',
}
def __len__(self):
return self.nums // 2
class PairedStereoImageDataset(data.Dataset):
'''
Paired dataset for stereo SR (Flickr1024, KITTI, Middlebury)
'''
def __init__(self, opt):
super(PairedStereoImageDataset, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
if 'filename_tmpl' in opt:
self.filename_tmpl = opt['filename_tmpl']
else:
self.filename_tmpl = '{}'
assert self.io_backend_opt['type'] == 'disk'
import os
self.lq_files = os.listdir(self.lq_folder)
self.gt_files = os.listdir(self.gt_folder)
self.nums = len(self.gt_files)
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
gt_path_L = os.path.join(self.gt_folder, self.gt_files[index], 'hr0.png')
gt_path_R = os.path.join(self.gt_folder, self.gt_files[index], 'hr1.png')
img_bytes = self.file_client.get(gt_path_L, 'gt')
try:
img_gt_L = imfrombytes(img_bytes, float32=True)
except:
raise Exception("gt path {} not working".format(gt_path_L))
img_bytes = self.file_client.get(gt_path_R, 'gt')
try:
img_gt_R = imfrombytes(img_bytes, float32=True)
except:
raise Exception("gt path {} not working".format(gt_path_R))
lq_path_L = os.path.join(self.lq_folder, self.lq_files[index], 'lr0.png')
lq_path_R = os.path.join(self.lq_folder, self.lq_files[index], 'lr1.png')
# lq_path = self.paths[index]['lq_path']
# print(', lq path', lq_path)
img_bytes = self.file_client.get(lq_path_L, 'lq')
try:
img_lq_L = imfrombytes(img_bytes, float32=True)
except:
raise Exception("lq path {} not working".format(lq_path_L))
img_bytes = self.file_client.get(lq_path_R, 'lq')
try:
img_lq_R = imfrombytes(img_bytes, float32=True)
except:
raise Exception("lq path {} not working".format(lq_path_R))
img_gt = np.concatenate([img_gt_L, img_gt_R], axis=-1)
img_lq = np.concatenate([img_lq_L, img_lq_R], axis=-1)
scale = self.opt['scale']
# augmentation for training
if self.opt['phase'] == 'train':
if 'gt_size_h' in self.opt and 'gt_size_w' in self.opt:
gt_size_h = int(self.opt['gt_size_h'])
gt_size_w = int(self.opt['gt_size_w'])
else:
gt_size = int(self.opt['gt_size'])
gt_size_h, gt_size_w = gt_size, gt_size
if 'flip_RGB' in self.opt and self.opt['flip_RGB']:
idx = [
[0, 1, 2, 3, 4, 5],
[0, 2, 1, 3, 5, 4],
[1, 0, 2, 4, 3, 5],
[1, 2, 0, 4, 5, 3],
[2, 0, 1, 5, 3, 4],
[2, 1, 0, 5, 4, 3],
][int(np.random.rand() * 6)]
img_gt = img_gt[:, :, idx]
img_lq = img_lq[:, :, idx]
# random crop
img_gt, img_lq = img_gt.copy(), img_lq.copy()
img_gt, img_lq = paired_random_crop_hw(img_gt, img_lq, gt_size_h, gt_size_w, scale,
'gt_path_L_and_R')
# flip, rotation
imgs, status = augment([img_gt, img_lq], self.opt['use_hflip'],
self.opt['use_rot'], vflip=self.opt['use_vflip'], return_status=True)
img_gt, img_lq = imgs
img_gt, img_lq = img2tensor([img_gt, img_lq],
bgr2rgb=True,
float32=True)
# normalize
if self.mean is not None or self.std is not None:
normalize(img_lq, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
return {
'lq': img_lq,
'gt': img_gt,
'lq_path': os.path.join(self.lq_folder, self.lq_files[index]),
'gt_path': os.path.join(self.gt_folder, self.gt_files[index]),
}
def __len__(self):
return self.nums