mirror of https://github.com/JosephKJ/OWOD.git
204 lines
7.5 KiB
Python
204 lines
7.5 KiB
Python
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||
|
import json
|
||
|
import math
|
||
|
import numpy as np
|
||
|
import unittest
|
||
|
import torch
|
||
|
|
||
|
from detectron2.structures import Boxes, BoxMode, pairwise_ioa, pairwise_iou
|
||
|
from detectron2.utils.env import TORCH_VERSION
|
||
|
|
||
|
|
||
|
class TestBoxMode(unittest.TestCase):
|
||
|
def _convert_xy_to_wh(self, x):
|
||
|
return BoxMode.convert(x, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
||
|
|
||
|
def _convert_xywha_to_xyxy(self, x):
|
||
|
return BoxMode.convert(x, BoxMode.XYWHA_ABS, BoxMode.XYXY_ABS)
|
||
|
|
||
|
def _convert_xywh_to_xywha(self, x):
|
||
|
return BoxMode.convert(x, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS)
|
||
|
|
||
|
def test_box_convert_list(self):
|
||
|
for tp in [list, tuple]:
|
||
|
box = tp([5.0, 5.0, 10.0, 10.0])
|
||
|
output = self._convert_xy_to_wh(box)
|
||
|
self.assertIsInstance(output, tp)
|
||
|
self.assertIsInstance(output[0], float)
|
||
|
self.assertEqual(output, tp([5.0, 5.0, 5.0, 5.0]))
|
||
|
|
||
|
with self.assertRaises(Exception):
|
||
|
self._convert_xy_to_wh([box])
|
||
|
|
||
|
def test_box_convert_array(self):
|
||
|
box = np.asarray([[5, 5, 10, 10], [1, 1, 2, 3]])
|
||
|
output = self._convert_xy_to_wh(box)
|
||
|
self.assertEqual(output.dtype, box.dtype)
|
||
|
self.assertEqual(output.shape, box.shape)
|
||
|
self.assertTrue((output[0] == [5, 5, 5, 5]).all())
|
||
|
self.assertTrue((output[1] == [1, 1, 1, 2]).all())
|
||
|
|
||
|
def test_box_convert_cpu_tensor(self):
|
||
|
box = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]])
|
||
|
output = self._convert_xy_to_wh(box)
|
||
|
self.assertEqual(output.dtype, box.dtype)
|
||
|
self.assertEqual(output.shape, box.shape)
|
||
|
output = output.numpy()
|
||
|
self.assertTrue((output[0] == [5, 5, 5, 5]).all())
|
||
|
self.assertTrue((output[1] == [1, 1, 1, 2]).all())
|
||
|
|
||
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
|
||
|
def test_box_convert_cuda_tensor(self):
|
||
|
box = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]).cuda()
|
||
|
output = self._convert_xy_to_wh(box)
|
||
|
self.assertEqual(output.dtype, box.dtype)
|
||
|
self.assertEqual(output.shape, box.shape)
|
||
|
self.assertEqual(output.device, box.device)
|
||
|
output = output.cpu().numpy()
|
||
|
self.assertTrue((output[0] == [5, 5, 5, 5]).all())
|
||
|
self.assertTrue((output[1] == [1, 1, 1, 2]).all())
|
||
|
|
||
|
def test_box_convert_xywha_to_xyxy_list(self):
|
||
|
for tp in [list, tuple]:
|
||
|
box = tp([50, 50, 30, 20, 0])
|
||
|
output = self._convert_xywha_to_xyxy(box)
|
||
|
self.assertIsInstance(output, tp)
|
||
|
self.assertEqual(output, tp([35, 40, 65, 60]))
|
||
|
|
||
|
with self.assertRaises(Exception):
|
||
|
self._convert_xywha_to_xyxy([box])
|
||
|
|
||
|
def test_box_convert_xywha_to_xyxy_array(self):
|
||
|
for dtype in [np.float64, np.float32]:
|
||
|
box = np.asarray(
|
||
|
[
|
||
|
[50, 50, 30, 20, 0],
|
||
|
[50, 50, 30, 20, 90],
|
||
|
[1, 1, math.sqrt(2), math.sqrt(2), -45],
|
||
|
],
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
output = self._convert_xywha_to_xyxy(box)
|
||
|
self.assertEqual(output.dtype, box.dtype)
|
||
|
expected = np.asarray([[35, 40, 65, 60], [40, 35, 60, 65], [0, 0, 2, 2]], dtype=dtype)
|
||
|
self.assertTrue(np.allclose(output, expected, atol=1e-6), "output={}".format(output))
|
||
|
|
||
|
def test_box_convert_xywha_to_xyxy_tensor(self):
|
||
|
for dtype in [torch.float32, torch.float64]:
|
||
|
box = torch.tensor(
|
||
|
[
|
||
|
[50, 50, 30, 20, 0],
|
||
|
[50, 50, 30, 20, 90],
|
||
|
[1, 1, math.sqrt(2), math.sqrt(2), -45],
|
||
|
],
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
output = self._convert_xywha_to_xyxy(box)
|
||
|
self.assertEqual(output.dtype, box.dtype)
|
||
|
expected = torch.tensor([[35, 40, 65, 60], [40, 35, 60, 65], [0, 0, 2, 2]], dtype=dtype)
|
||
|
|
||
|
self.assertTrue(torch.allclose(output, expected, atol=1e-6), "output={}".format(output))
|
||
|
|
||
|
def test_box_convert_xywh_to_xywha_list(self):
|
||
|
for tp in [list, tuple]:
|
||
|
box = tp([50, 50, 30, 20])
|
||
|
output = self._convert_xywh_to_xywha(box)
|
||
|
self.assertIsInstance(output, tp)
|
||
|
self.assertEqual(output, tp([65, 60, 30, 20, 0]))
|
||
|
|
||
|
with self.assertRaises(Exception):
|
||
|
self._convert_xywh_to_xywha([box])
|
||
|
|
||
|
def test_box_convert_xywh_to_xywha_array(self):
|
||
|
for dtype in [np.float64, np.float32]:
|
||
|
box = np.asarray([[30, 40, 70, 60], [30, 40, 60, 70], [-1, -1, 2, 2]], dtype=dtype)
|
||
|
output = self._convert_xywh_to_xywha(box)
|
||
|
self.assertEqual(output.dtype, box.dtype)
|
||
|
expected = np.asarray(
|
||
|
[[65, 70, 70, 60, 0], [60, 75, 60, 70, 0], [0, 0, 2, 2, 0]], dtype=dtype
|
||
|
)
|
||
|
self.assertTrue(np.allclose(output, expected, atol=1e-6), "output={}".format(output))
|
||
|
|
||
|
def test_box_convert_xywh_to_xywha_tensor(self):
|
||
|
for dtype in [torch.float32, torch.float64]:
|
||
|
box = torch.tensor([[30, 40, 70, 60], [30, 40, 60, 70], [-1, -1, 2, 2]], dtype=dtype)
|
||
|
output = self._convert_xywh_to_xywha(box)
|
||
|
self.assertEqual(output.dtype, box.dtype)
|
||
|
expected = torch.tensor(
|
||
|
[[65, 70, 70, 60, 0], [60, 75, 60, 70, 0], [0, 0, 2, 2, 0]], dtype=dtype
|
||
|
)
|
||
|
|
||
|
self.assertTrue(torch.allclose(output, expected, atol=1e-6), "output={}".format(output))
|
||
|
|
||
|
def test_json_serializable(self):
|
||
|
payload = {"box_mode": BoxMode.XYWH_REL}
|
||
|
try:
|
||
|
json.dumps(payload)
|
||
|
except Exception:
|
||
|
self.fail("JSON serialization failed")
|
||
|
|
||
|
def test_json_deserializable(self):
|
||
|
payload = '{"box_mode": 2}'
|
||
|
obj = json.loads(payload)
|
||
|
try:
|
||
|
obj["box_mode"] = BoxMode(obj["box_mode"])
|
||
|
except Exception:
|
||
|
self.fail("JSON deserialization failed")
|
||
|
|
||
|
|
||
|
class TestBoxIOU(unittest.TestCase):
|
||
|
def create_boxes(self):
|
||
|
boxes1 = torch.tensor([[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]])
|
||
|
|
||
|
boxes2 = torch.tensor(
|
||
|
[
|
||
|
[0.0, 0.0, 1.0, 1.0],
|
||
|
[0.0, 0.0, 0.5, 1.0],
|
||
|
[0.0, 0.0, 1.0, 0.5],
|
||
|
[0.0, 0.0, 0.5, 0.5],
|
||
|
[0.5, 0.5, 1.0, 1.0],
|
||
|
[0.5, 0.5, 1.5, 1.5],
|
||
|
]
|
||
|
)
|
||
|
return boxes1, boxes2
|
||
|
|
||
|
def test_pairwise_iou(self):
|
||
|
boxes1, boxes2 = self.create_boxes()
|
||
|
expected_ious = torch.tensor(
|
||
|
[
|
||
|
[1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
|
||
|
[1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
|
||
|
]
|
||
|
)
|
||
|
|
||
|
ious = pairwise_iou(Boxes(boxes1), Boxes(boxes2))
|
||
|
self.assertTrue(torch.allclose(ious, expected_ious))
|
||
|
|
||
|
def test_pairwise_ioa(self):
|
||
|
boxes1, boxes2 = self.create_boxes()
|
||
|
expected_ioas = torch.tensor(
|
||
|
[[1.0, 1.0, 1.0, 1.0, 1.0, 0.25], [1.0, 1.0, 1.0, 1.0, 1.0, 0.25]]
|
||
|
)
|
||
|
ioas = pairwise_ioa(Boxes(boxes1), Boxes(boxes2))
|
||
|
self.assertTrue(torch.allclose(ioas, expected_ioas))
|
||
|
|
||
|
|
||
|
class TestBoxes(unittest.TestCase):
|
||
|
def test_empty_cat(self):
|
||
|
x = Boxes.cat([])
|
||
|
self.assertTrue(x.tensor.shape, (0, 4))
|
||
|
|
||
|
# require https://github.com/pytorch/pytorch/pull/39336
|
||
|
@unittest.skipIf(TORCH_VERSION < (1, 6), "Insufficient pytorch version")
|
||
|
def test_scriptability(self):
|
||
|
def func(x):
|
||
|
boxes = Boxes(x)
|
||
|
return boxes.area()
|
||
|
|
||
|
f = torch.jit.script(func)
|
||
|
f(torch.rand((3, 4)))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|