mirror of https://github.com/JosephKJ/OWOD.git
Detectron2
parent
6b4cb9fd06
commit
73d7a85f88
|
@ -0,0 +1,83 @@
|
|||
## Getting Started with Detectron2
|
||||
|
||||
This document provides a brief intro of the usage of builtin command-line tools in detectron2.
|
||||
|
||||
For a tutorial that involves actual coding with the API,
|
||||
see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
||||
which covers how to run inference with an
|
||||
existing model, and how to train a builtin model on a custom dataset.
|
||||
|
||||
For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).
|
||||
|
||||
|
||||
### Inference Demo with Pre-trained Models
|
||||
|
||||
1. Pick a model and its config file from
|
||||
[model zoo](MODEL_ZOO.md),
|
||||
for example, `mask_rcnn_R_50_FPN_3x.yaml`.
|
||||
2. We provide `demo.py` that is able to demo builtin configs. Run it with:
|
||||
```
|
||||
cd demo/
|
||||
python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
|
||||
--input input1.jpg input2.jpg \
|
||||
[--other-options]
|
||||
--opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
|
||||
```
|
||||
The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
|
||||
This command will run the inference and show visualizations in an OpenCV window.
|
||||
|
||||
For details of the command line arguments, see `demo.py -h` or look at its source code
|
||||
to understand its behavior. Some common arguments are:
|
||||
* To run __on your webcam__, replace `--input files` with `--webcam`.
|
||||
* To run __on a video__, replace `--input files` with `--video-input video.mp4`.
|
||||
* To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
|
||||
* To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
|
||||
|
||||
|
||||
### Training & Evaluation in Command Line
|
||||
|
||||
We provide two scripts in "tools/plain_train_net.py" and "tools/train_net.py",
|
||||
that are made to train all the configs provided in detectron2. You may want to
|
||||
use it as a reference to write your own training script.
|
||||
|
||||
Compared to "train_net.py", "plain_train_net.py" supports fewer default
|
||||
features. It also includes fewer abstraction, therefore is easier to add custom
|
||||
logic.
|
||||
|
||||
To train a model with "train_net.py", first
|
||||
setup the corresponding datasets following
|
||||
[datasets/README.md](./datasets/README.md),
|
||||
then run:
|
||||
```
|
||||
cd tools/
|
||||
./train_net.py --num-gpus 8 \
|
||||
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
|
||||
```
|
||||
|
||||
The configs are made for 8-GPU training.
|
||||
To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
|
||||
```
|
||||
./train_net.py \
|
||||
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
|
||||
--num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
|
||||
```
|
||||
|
||||
For most models, CPU training is not supported.
|
||||
|
||||
To evaluate a model's performance, use
|
||||
```
|
||||
./train_net.py \
|
||||
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
|
||||
--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
|
||||
```
|
||||
For more options, see `./train_net.py -h`.
|
||||
|
||||
### Use Detectron2 APIs in Your Code
|
||||
|
||||
See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
||||
to learn how to use detectron2 APIs to:
|
||||
1. run inference with an existing model
|
||||
2. train a builtin model on a custom dataset
|
||||
|
||||
See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
|
||||
for more ways to build your project on detectron2.
|
|
@ -0,0 +1,230 @@
|
|||
## Installation
|
||||
|
||||
Our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
||||
has step-by-step instructions that install detectron2.
|
||||
The [Dockerfile](docker)
|
||||
also installs detectron2 with a few simple commands.
|
||||
|
||||
### Requirements
|
||||
- Linux or macOS with Python ≥ 3.6
|
||||
- PyTorch ≥ 1.4 and [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation.
|
||||
You can install them together at [pytorch.org](https://pytorch.org) to make sure of this
|
||||
- OpenCV is optional and needed by demo and visualization
|
||||
|
||||
|
||||
### Build Detectron2 from Source
|
||||
|
||||
gcc & g++ ≥ 5 are required. [ninja](https://ninja-build.org/) is recommended for faster build.
|
||||
After having them, run:
|
||||
```
|
||||
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
|
||||
# (add --user if you don't have permission)
|
||||
|
||||
# Or, to install it from a local clone:
|
||||
git clone https://github.com/facebookresearch/detectron2.git
|
||||
python -m pip install -e detectron2
|
||||
|
||||
# Or if you are on macOS
|
||||
CC=clang CXX=clang++ python -m pip install ......
|
||||
```
|
||||
|
||||
To __rebuild__ detectron2 that's built from a local clone, use `rm -rf build/ **/*.so` to clean the
|
||||
old build first. You often need to rebuild detectron2 after reinstalling PyTorch.
|
||||
|
||||
### Install Pre-Built Detectron2 (Linux only)
|
||||
|
||||
Choose from this table to install [v0.2.1 (Aug 2020)](https://github.com/facebookresearch/detectron2/releases):
|
||||
|
||||
<table class="docutils"><tbody><th width="80"> CUDA </th><th valign="bottom" align="left" width="100">torch 1.6</th><th valign="bottom" align="left" width="100">torch 1.5</th><th valign="bottom" align="left" width="100">torch 1.4</th> <tr><td align="left">10.2</td><td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.6/index.html
|
||||
</code></pre> </details> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.5/index.html
|
||||
</code></pre> </details> </td> <td align="left"> </td> </tr> <tr><td align="left">10.1</td><td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.6/index.html
|
||||
</code></pre> </details> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.5/index.html
|
||||
</code></pre> </details> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.4/index.html
|
||||
</code></pre> </details> </td> </tr> <tr><td align="left">10.0</td><td align="left"> </td> <td align="left"> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu100/torch1.4/index.html
|
||||
</code></pre> </details> </td> </tr> <tr><td align="left">9.2</td><td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu92/torch1.6/index.html
|
||||
</code></pre> </details> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu92/torch1.5/index.html
|
||||
</code></pre> </details> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cu92/torch1.4/index.html
|
||||
</code></pre> </details> </td> </tr> <tr><td align="left">cpu</td><td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.6/index.html
|
||||
</code></pre> </details> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.5/index.html
|
||||
</code></pre> </details> </td> <td align="left"><details><summary> install </summary><pre><code>python -m pip install detectron2 -f \
|
||||
https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.4/index.html
|
||||
</code></pre> </details> </td> </tr></tbody></table>
|
||||
|
||||
|
||||
Note that:
|
||||
1. The pre-built package has to be used with corresponding version of CUDA and official PyTorch release.
|
||||
It will not work with a different version of PyTorch or a non-official build of PyTorch.
|
||||
2. New packages are released every few months. Therefore, packages may not contain latest features in the master
|
||||
branch and may not be compatible with the master branch of a research project that uses detectron2
|
||||
(e.g. those in [projects](projects)).
|
||||
|
||||
### Common Installation Issues
|
||||
|
||||
Click each issue for its solutions:
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
Undefined symbols that contains TH,aten,torch,caffe2; Missing torch dynamic libraries; Segmentation fault immediately when using detectron2.
|
||||
</summary>
|
||||
<br/>
|
||||
|
||||
This usually happens when detectron2 or torchvision is not
|
||||
compiled with the version of PyTorch you're running.
|
||||
|
||||
If the error comes from a pre-built torchvision, uninstall torchvision and pytorch and reinstall them
|
||||
following [pytorch.org](http://pytorch.org). So the versions will match.
|
||||
|
||||
If the error comes from a pre-built detectron2, check [release notes](https://github.com/facebookresearch/detectron2/releases)
|
||||
to see the corresponding pytorch version required for each pre-built detectron2.
|
||||
Or uninstall and reinstall the correct pre-built detectron2.
|
||||
|
||||
If the error comes from detectron2 or torchvision that you built manually from source,
|
||||
remove files you built (`build/`, `**/*.so`) and rebuild it so it can pick up the version of pytorch currently in your environment.
|
||||
|
||||
If you cannot resolve this problem, please include the output of `gdb -ex "r" -ex "bt" -ex "quit" --args python -m detectron2.utils.collect_env`
|
||||
in your issue.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
Undefined C++ symbols (e.g. `GLIBCXX`) or C++ symbols not found.
|
||||
</summary>
|
||||
<br/>
|
||||
Usually it's because the library is compiled with a newer C++ compiler but run with an old C++ runtime.
|
||||
|
||||
This often happens with old anaconda.
|
||||
Try `conda update libgcc`. Then rebuild detectron2.
|
||||
|
||||
The fundamental solution is to run the code with proper C++ runtime.
|
||||
One way is to use `LD_PRELOAD=/path/to/libstdc++.so`.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
"nvcc not found" or "Not compiled with GPU support" or "Detectron2 CUDA Compiler: not available".
|
||||
</summary>
|
||||
<br/>
|
||||
CUDA is not found when building detectron2.
|
||||
You should make sure
|
||||
|
||||
```
|
||||
python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'
|
||||
```
|
||||
|
||||
print `(True, a directory with cuda)` at the time you build detectron2.
|
||||
|
||||
Most models can run inference (but not training) without GPU support. To use CPUs, set `MODEL.DEVICE='cpu'` in the config.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
"invalid device function" or "no kernel image is available for execution".
|
||||
</summary>
|
||||
<br/>
|
||||
Two possibilities:
|
||||
|
||||
* You build detectron2 with one version of CUDA but run it with a different version.
|
||||
|
||||
To check whether it is the case,
|
||||
use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
|
||||
In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
|
||||
to contain cuda libraries of the same version.
|
||||
|
||||
When they are inconsistent,
|
||||
you need to either install a different build of PyTorch (or build by yourself)
|
||||
to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
|
||||
|
||||
* PyTorch/torchvision/Detectron2 is not built for the correct GPU architecture (aka. compute capability).
|
||||
|
||||
The architecture included by PyTorch/detectron2/torchvision is available in the "architecture flags" in
|
||||
`python -m detectron2.utils.collect_env`. It must include
|
||||
the architecture of your GPU, which can be found at [developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus).
|
||||
|
||||
If you're using pre-built PyTorch/detectron2/torchvision, they have included support for most popular GPUs already.
|
||||
If not supported, you need to build them from source.
|
||||
|
||||
When building detectron2/torchvision from source, they detect the GPU device and build for only the device.
|
||||
This means the compiled code may not work on a different GPU device.
|
||||
To recompile them for the correct architecture, remove all installed/compiled files,
|
||||
and rebuild them with the `TORCH_CUDA_ARCH_LIST` environment variable set properly.
|
||||
For example, `export TORCH_CUDA_ARCH_LIST=6.0,7.0` makes it compile for both P100s and V100s.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
Undefined CUDA symbols; Cannot open libcudart.so
|
||||
</summary>
|
||||
<br/>
|
||||
The version of NVCC you use to build detectron2 or torchvision does
|
||||
not match the version of CUDA you are running with.
|
||||
This often happens when using anaconda's CUDA runtime.
|
||||
|
||||
Use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
|
||||
In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
|
||||
to contain cuda libraries of the same version.
|
||||
|
||||
When they are inconsistent,
|
||||
you need to either install a different build of PyTorch (or build by yourself)
|
||||
to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
C++ compilation errors from NVCC
|
||||
</summary>
|
||||
|
||||
1. NVCC version has to match the CUDA version of your PyTorch.
|
||||
|
||||
2. The combination of NVCC and GCC you use is incompatible. You need to change one of their versions.
|
||||
See [here](https://gist.github.com/ax3l/9489132) for some valid combinations.
|
||||
|
||||
The CUDA/GCC version used by PyTorch can be found by `print(torch.__config__.show())`.
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
"ImportError: cannot import name '_C'".
|
||||
</summary>
|
||||
<br/>
|
||||
Please build and install detectron2 following the instructions above.
|
||||
|
||||
Or, if you are running code from detectron2's root directory, `cd` to a different one.
|
||||
Otherwise you may not import the code that you installed.
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
Any issue on windows.
|
||||
</summary>
|
||||
<br/>
|
||||
|
||||
Detectron2 is continuously built on windows with [CircleCI](https://app.circleci.com/pipelines/github/facebookresearch/detectron2?branch=master).
|
||||
However we do not provide official support for it.
|
||||
PRs that improves code compatibility on windows are welcome.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
ONNX conversion segfault after some "TraceWarning".
|
||||
</summary>
|
||||
<br/>
|
||||
The ONNX package is compiled with a too old compiler.
|
||||
|
||||
Please build and install ONNX from its source code using a compiler
|
||||
whose version is closer to what's used by PyTorch (available in `torch.__config__.show()`).
|
||||
</details>
|
|
@ -0,0 +1,201 @@
|
|||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2019 - present, Facebook, Inc
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
|
@ -0,0 +1,904 @@
|
|||
# Detectron2 Model Zoo and Baselines
|
||||
|
||||
## Introduction
|
||||
|
||||
This file documents a large collection of baselines trained
|
||||
with detectron2 in Sep-Oct, 2019.
|
||||
All numbers were obtained on [Big Basin](https://engineering.fb.com/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/)
|
||||
servers with 8 NVIDIA V100 GPUs & NVLink. The software in use were PyTorch 1.3, CUDA 9.2, cuDNN 7.4.2 or 7.6.3.
|
||||
You can access these models from code using [detectron2.model_zoo](https://detectron2.readthedocs.io/modules/model_zoo.html) APIs.
|
||||
|
||||
In addition to these official baseline models, you can find more models in [projects/](projects/).
|
||||
|
||||
#### How to Read the Tables
|
||||
* The "Name" column contains a link to the config file. Running `tools/train_net.py --num-gpus 8` with this config file
|
||||
will reproduce the model.
|
||||
* Training speed is averaged across the entire training.
|
||||
We keep updating the speed with latest version of detectron2/pytorch/etc.,
|
||||
so they might be different from the `metrics` file.
|
||||
Training speed for multi-machine jobs is not provided.
|
||||
* Inference speed is measured by `tools/train_net.py --eval-only`, or [inference_on_dataset()](https://detectron2.readthedocs.io/modules/evaluation.html#detectron2.evaluation.inference_on_dataset),
|
||||
with batch size 1 in detectron2 directly.
|
||||
Measuring it with custom code may introduce other overhead.
|
||||
Actual deployment in production should in general be faster than the given inference
|
||||
speed due to more optimizations.
|
||||
* The *model id* column is provided for ease of reference.
|
||||
To check downloaded file integrity, any model on this page contains its md5 prefix in its file name.
|
||||
* Training curves and other statistics can be found in `metrics` for each model.
|
||||
|
||||
#### Common Settings for COCO Models
|
||||
* All COCO models were trained on `train2017` and evaluated on `val2017`.
|
||||
* The default settings are __not directly comparable__ with Detectron's standard settings.
|
||||
For example, our default training data augmentation uses scale jittering in addition to horizontal flipping.
|
||||
|
||||
To make fair comparisons with Detectron's settings, see
|
||||
[Detectron1-Comparisons](configs/Detectron1-Comparisons/) for accuracy comparison,
|
||||
and [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html)
|
||||
for speed comparison.
|
||||
* For Faster/Mask R-CNN, we provide baselines based on __3 different backbone combinations__:
|
||||
* __FPN__: Use a ResNet+FPN backbone with standard conv and FC heads for mask and box prediction,
|
||||
respectively. It obtains the best
|
||||
speed/accuracy tradeoff, but the other two are still useful for research.
|
||||
* __C4__: Use a ResNet conv4 backbone with conv5 head. The original baseline in the Faster R-CNN paper.
|
||||
* __DC5__ (Dilated-C5): Use a ResNet conv5 backbone with dilations in conv5, and standard conv and FC heads
|
||||
for mask and box prediction, respectively.
|
||||
This is used by the Deformable ConvNet paper.
|
||||
* Most models are trained with the 3x schedule (~37 COCO epochs).
|
||||
Although 1x models are heavily under-trained, we provide some ResNet-50 models with the 1x (~12 COCO epochs)
|
||||
training schedule for comparison when doing quick research iteration.
|
||||
|
||||
#### ImageNet Pretrained Models
|
||||
|
||||
It's common to initialize from backbone models pre-trained on ImageNet classification tasks. The following backbone models are available:
|
||||
|
||||
* [R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl): converted copy of [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks) model.
|
||||
* [R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl): converted copy of [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks) model.
|
||||
* [X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl): ResNeXt-101-32x8d model trained with Caffe2 at FB.
|
||||
* [R-50.pkl (torchvision)](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/torchvision/R-50.pkl): converted copy of [torchvision's ResNet-50](https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.resnet50) model.
|
||||
More details can be found in [the conversion script](tools/convert-torchvision-to-d2.py).
|
||||
|
||||
Note that the above models have __different__ format from those provided in Detectron: we do not fuse BatchNorm into an affine layer.
|
||||
Pretrained models in Detectron's format can still be used. For example:
|
||||
* [X-152-32x8d-IN5k.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl):
|
||||
ResNeXt-152-32x8d model trained on ImageNet-5k with Caffe2 at FB (see ResNeXt paper for details on ImageNet-5k).
|
||||
* [R-50-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl):
|
||||
ResNet-50 with Group Normalization.
|
||||
* [R-101-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl):
|
||||
ResNet-101 with Group Normalization.
|
||||
|
||||
#### License
|
||||
|
||||
All models available for download through this document are licensed under the
|
||||
[Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
|
||||
|
||||
### COCO Object Detection Baselines
|
||||
|
||||
#### Faster R-CNN:
|
||||
<!--
|
||||
(fb only) To update the table in vim:
|
||||
1. Remove the old table: d}
|
||||
2. Copy the below command to the place of the table
|
||||
3. :.!bash
|
||||
|
||||
./gen_html_table.py --config 'COCO-Detection/faster*50*'{1x,3x}'*' 'COCO-Detection/faster*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: faster_rcnn_R_50_C4_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.551</td>
|
||||
<td align="center">0.102</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">35.7</td>
|
||||
<td align="center">137257644</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_DC5_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.380</td>
|
||||
<td align="center">0.068</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">37.3</td>
|
||||
<td align="center">137847829</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/model_final_51d356.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.210</td>
|
||||
<td align="center">0.038</td>
|
||||
<td align="center">3.0</td>
|
||||
<td align="center">37.9</td>
|
||||
<td align="center">137257794</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_C4_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.543</td>
|
||||
<td align="center">0.104</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">38.4</td>
|
||||
<td align="center">137849393</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/model_final_f97cb7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_DC5_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.378</td>
|
||||
<td align="center">0.070</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">39.0</td>
|
||||
<td align="center">137849425</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/model_final_68d202.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.209</td>
|
||||
<td align="center">0.038</td>
|
||||
<td align="center">3.0</td>
|
||||
<td align="center">40.2</td>
|
||||
<td align="center">137849458</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_101_C4_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.619</td>
|
||||
<td align="center">0.139</td>
|
||||
<td align="center">5.9</td>
|
||||
<td align="center">41.1</td>
|
||||
<td align="center">138204752</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_101_DC5_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.452</td>
|
||||
<td align="center">0.086</td>
|
||||
<td align="center">6.1</td>
|
||||
<td align="center">40.6</td>
|
||||
<td align="center">138204841</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/model_final_3e0943.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_101_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.286</td>
|
||||
<td align="center">0.051</td>
|
||||
<td align="center">4.1</td>
|
||||
<td align="center">42.0</td>
|
||||
<td align="center">137851257</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/model_final_f6e8b1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_X_101_32x8d_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.638</td>
|
||||
<td align="center">0.098</td>
|
||||
<td align="center">6.7</td>
|
||||
<td align="center">43.0</td>
|
||||
<td align="center">139173657</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/model_final_68b088.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
#### RetinaNet:
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-Detection/retina*50*' 'COCO-Detection/retina*101*' --name R50 R50 R101 --fields lr_sched train_speed inference_speed mem box_AP
|
||||
-->
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: retinanet_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml">R50</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.205</td>
|
||||
<td align="center">0.041</td>
|
||||
<td align="center">4.1</td>
|
||||
<td align="center">37.4</td>
|
||||
<td align="center">190397773</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/190397773/model_final_bfca0b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/190397773/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: retinanet_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml">R50</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.205</td>
|
||||
<td align="center">0.041</td>
|
||||
<td align="center">4.1</td>
|
||||
<td align="center">38.7</td>
|
||||
<td align="center">190397829</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/190397829/model_final_5bd44e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/190397829/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: retinanet_R_101_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml">R101</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.291</td>
|
||||
<td align="center">0.054</td>
|
||||
<td align="center">5.2</td>
|
||||
<td align="center">40.4</td>
|
||||
<td align="center">190397697</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/190397697/model_final_971ab9.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/190397697/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
#### RPN & Fast R-CNN:
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-Detection/rpn*' 'COCO-Detection/fast_rcnn*' --name "RPN R50-C4" "RPN R50-FPN" "Fast R-CNN R50-FPN" --fields lr_sched train_speed inference_speed mem box_AP prop_AR
|
||||
-->
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">prop.<br/>AR</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: rpn_R_50_C4_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_C4_1x.yaml">RPN R50-C4</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.130</td>
|
||||
<td align="center">0.034</td>
|
||||
<td align="center">1.5</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">51.6</td>
|
||||
<td align="center">137258005</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/model_final_450694.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: rpn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_FPN_1x.yaml">RPN R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.186</td>
|
||||
<td align="center">0.032</td>
|
||||
<td align="center">2.7</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">58.0</td>
|
||||
<td align="center">137258492</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: fast_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml">Fast R-CNN R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.140</td>
|
||||
<td align="center">0.029</td>
|
||||
<td align="center">2.6</td>
|
||||
<td align="center">37.8</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">137635226</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
### COCO Instance Segmentation Baselines with Mask R-CNN
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask*50*'{1x,3x}'*' 'COCO-InstanceSegmentation/mask*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
||||
-->
|
||||
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_C4_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.584</td>
|
||||
<td align="center">0.110</td>
|
||||
<td align="center">5.2</td>
|
||||
<td align="center">36.8</td>
|
||||
<td align="center">32.2</td>
|
||||
<td align="center">137259246</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_DC5_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.471</td>
|
||||
<td align="center">0.076</td>
|
||||
<td align="center">6.5</td>
|
||||
<td align="center">38.3</td>
|
||||
<td align="center">34.2</td>
|
||||
<td align="center">137260150</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/model_final_4f86c3.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">38.6</td>
|
||||
<td align="center">35.2</td>
|
||||
<td align="center">137260431</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_C4_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.575</td>
|
||||
<td align="center">0.111</td>
|
||||
<td align="center">5.2</td>
|
||||
<td align="center">39.8</td>
|
||||
<td align="center">34.4</td>
|
||||
<td align="center">137849525</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_DC5_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.470</td>
|
||||
<td align="center">0.076</td>
|
||||
<td align="center">6.5</td>
|
||||
<td align="center">40.0</td>
|
||||
<td align="center">35.9</td>
|
||||
<td align="center">137849551</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">41.0</td>
|
||||
<td align="center">37.2</td>
|
||||
<td align="center">137849600</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_101_C4_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.652</td>
|
||||
<td align="center">0.145</td>
|
||||
<td align="center">6.3</td>
|
||||
<td align="center">42.6</td>
|
||||
<td align="center">36.7</td>
|
||||
<td align="center">138363239</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_101_DC5_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.545</td>
|
||||
<td align="center">0.092</td>
|
||||
<td align="center">7.6</td>
|
||||
<td align="center">41.9</td>
|
||||
<td align="center">37.3</td>
|
||||
<td align="center">138363294</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/model_final_0464b7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_101_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.340</td>
|
||||
<td align="center">0.056</td>
|
||||
<td align="center">4.6</td>
|
||||
<td align="center">42.9</td>
|
||||
<td align="center">38.6</td>
|
||||
<td align="center">138205316</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_X_101_32x8d_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.690</td>
|
||||
<td align="center">0.103</td>
|
||||
<td align="center">7.2</td>
|
||||
<td align="center">44.3</td>
|
||||
<td align="center">39.5</td>
|
||||
<td align="center">139653917</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/model_final_2d9806.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
### COCO Person Keypoint Detection Baselines with Keypoint R-CNN
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-Keypoints/*50*' 'COCO-Keypoints/*101*' --name R50-FPN R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP keypoint_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">kp.<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.315</td>
|
||||
<td align="center">0.072</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">53.6</td>
|
||||
<td align="center">64.0</td>
|
||||
<td align="center">137261548</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/model_final_04e291.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.316</td>
|
||||
<td align="center">0.066</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">55.4</td>
|
||||
<td align="center">65.5</td>
|
||||
<td align="center">137849621</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_R_101_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.390</td>
|
||||
<td align="center">0.076</td>
|
||||
<td align="center">6.1</td>
|
||||
<td align="center">56.4</td>
|
||||
<td align="center">66.1</td>
|
||||
<td align="center">138363331</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/model_final_997cc7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_X_101_32x8d_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.738</td>
|
||||
<td align="center">0.121</td>
|
||||
<td align="center">8.7</td>
|
||||
<td align="center">57.3</td>
|
||||
<td align="center">66.0</td>
|
||||
<td align="center">139686956</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/model_final_5ad38f.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
### COCO Panoptic Segmentation Baselines with Panoptic FPN
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-PanopticSegmentation/*50*' 'COCO-PanopticSegmentation/*101*' --name R50-FPN R50-FPN R101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP PQ
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">PQ</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: panoptic_fpn_R_50_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.304</td>
|
||||
<td align="center">0.053</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">37.6</td>
|
||||
<td align="center">34.7</td>
|
||||
<td align="center">39.4</td>
|
||||
<td align="center">139514544</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/model_final_dbfeb4.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: panoptic_fpn_R_50_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml">R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.302</td>
|
||||
<td align="center">0.053</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">40.0</td>
|
||||
<td align="center">36.5</td>
|
||||
<td align="center">41.5</td>
|
||||
<td align="center">139514569</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: panoptic_fpn_R_101_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml">R101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.392</td>
|
||||
<td align="center">0.066</td>
|
||||
<td align="center">6.0</td>
|
||||
<td align="center">42.4</td>
|
||||
<td align="center">38.5</td>
|
||||
<td align="center">43.0</td>
|
||||
<td align="center">139514519</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
### LVIS Instance Segmentation Baselines with Mask R-CNN
|
||||
|
||||
Mask R-CNN baselines on the [LVIS dataset](https://lvisdataset.org), v0.5.
|
||||
These baselines are described in Table 3(c) of the [LVIS paper](https://arxiv.org/abs/1908.03195).
|
||||
|
||||
NOTE: the 1x schedule here has the same amount of __iterations__ as the COCO 1x baselines.
|
||||
They are roughly 24 epochs of LVISv0.5 data.
|
||||
The final results of these configs have large variance across different runs.
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'LVISv0.5-InstanceSegmentation/mask*50*' 'LVISv0.5-InstanceSegmentation/mask*101*' --name R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.292</td>
|
||||
<td align="center">0.107</td>
|
||||
<td align="center">7.1</td>
|
||||
<td align="center">23.6</td>
|
||||
<td align="center">24.4</td>
|
||||
<td align="center">144219072</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/model_final_571f7c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVISv0.5-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_101_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/LVISv0.5-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml">R101-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.371</td>
|
||||
<td align="center">0.114</td>
|
||||
<td align="center">7.8</td>
|
||||
<td align="center">25.6</td>
|
||||
<td align="center">25.9</td>
|
||||
<td align="center">144219035</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVISv0.5-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/model_final_824ab5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVISv0.5-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_X_101_32x8d_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/LVISv0.5-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml">X101-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.712</td>
|
||||
<td align="center">0.151</td>
|
||||
<td align="center">10.2</td>
|
||||
<td align="center">26.7</td>
|
||||
<td align="center">27.1</td>
|
||||
<td align="center">144219108</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVISv0.5-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/model_final_5e3439.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVISv0.5-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
|
||||
### Cityscapes & Pascal VOC Baselines
|
||||
|
||||
Simple baselines for
|
||||
* Mask R-CNN on Cityscapes instance segmentation (initialized from COCO pre-training, then trained on Cityscapes fine annotations only)
|
||||
* Faster R-CNN on PASCAL VOC object detection (trained on VOC 2007 train+val + VOC 2012 train+val, tested on VOC 2007 using 11-point interpolated AP)
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'Cityscapes/*' 'PascalVOC-Detection/*' --name "R50-FPN, Cityscapes" "R50-C4, VOC" --fields train_speed inference_speed mem box_AP box_AP50 mask_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">box<br/>AP50</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_FPN -->
|
||||
<tr><td align="left"><a href="configs/Cityscapes/mask_rcnn_R_50_FPN.yaml">R50-FPN, Cityscapes</a></td>
|
||||
<td align="center">0.240</td>
|
||||
<td align="center">0.078</td>
|
||||
<td align="center">4.4</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center">36.5</td>
|
||||
<td align="center">142423278</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/model_final_af9cf5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_C4 -->
|
||||
<tr><td align="left"><a href="configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml">R50-C4, VOC</a></td>
|
||||
<td align="center">0.537</td>
|
||||
<td align="center">0.081</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">51.9</td>
|
||||
<td align="center">80.3</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">142202221</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/model_final_b1acc2.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
|
||||
### Other Settings
|
||||
|
||||
Ablations for Deformable Conv and Cascade R-CNN:
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml' 'Misc/*R_50_FPN_1x_dconv*' 'Misc/cascade*1x.yaml' 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/*R_50_FPN_3x_dconv*' 'Misc/cascade*3x.yaml' --name "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">Baseline R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">38.6</td>
|
||||
<td align="center">35.2</td>
|
||||
<td align="center">137260431</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_1x_dconv_c3-c5 -->
|
||||
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml">Deformable Conv</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.342</td>
|
||||
<td align="center">0.048</td>
|
||||
<td align="center">3.5</td>
|
||||
<td align="center">41.5</td>
|
||||
<td align="center">37.5</td>
|
||||
<td align="center">138602867</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/model_final_65c703.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: cascade_mask_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml">Cascade R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.317</td>
|
||||
<td align="center">0.052</td>
|
||||
<td align="center">4.0</td>
|
||||
<td align="center">42.1</td>
|
||||
<td align="center">36.4</td>
|
||||
<td align="center">138602847</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/model_final_e9d89b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">41.0</td>
|
||||
<td align="center">37.2</td>
|
||||
<td align="center">137849600</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x_dconv_c3-c5 -->
|
||||
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml">Deformable Conv</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.349</td>
|
||||
<td align="center">0.047</td>
|
||||
<td align="center">3.5</td>
|
||||
<td align="center">42.7</td>
|
||||
<td align="center">38.5</td>
|
||||
<td align="center">144998336</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/model_final_821d0b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: cascade_mask_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml">Cascade R-CNN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.328</td>
|
||||
<td align="center">0.053</td>
|
||||
<td align="center">4.0</td>
|
||||
<td align="center">44.3</td>
|
||||
<td align="center">38.5</td>
|
||||
<td align="center">144998488</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
Ablations for normalization methods, and a few models trained from scratch following [Rethinking ImageNet Pre-training](https://arxiv.org/abs/1811.08883).
|
||||
(Note: The baseline uses `2fc` head while the others use [`4conv1fc` head](https://arxiv.org/abs/1803.08494))
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/mask*50_FPN_3x_gn.yaml' 'Misc/mask*50_FPN_3x_syncbn.yaml' 'Misc/scratch*' --name "Baseline R50-FPN" "GN" "SyncBN" "GN (from scratch)" "GN (from scratch)" "SyncBN (from scratch)" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">41.0</td>
|
||||
<td align="center">37.2</td>
|
||||
<td align="center">137849600</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x_gn -->
|
||||
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml">GN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.309</td>
|
||||
<td align="center">0.060</td>
|
||||
<td align="center">5.6</td>
|
||||
<td align="center">42.6</td>
|
||||
<td align="center">38.6</td>
|
||||
<td align="center">138602888</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/model_final_dc5d9e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x_syncbn -->
|
||||
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml">SyncBN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.345</td>
|
||||
<td align="center">0.053</td>
|
||||
<td align="center">5.5</td>
|
||||
<td align="center">41.9</td>
|
||||
<td align="center">37.8</td>
|
||||
<td align="center">169527823</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/model_final_3b3c51.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: scratch_mask_rcnn_R_50_FPN_3x_gn -->
|
||||
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml">GN (from scratch)</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.338</td>
|
||||
<td align="center">0.061</td>
|
||||
<td align="center">7.2</td>
|
||||
<td align="center">39.9</td>
|
||||
<td align="center">36.6</td>
|
||||
<td align="center">138602908</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/model_final_01ca85.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_gn -->
|
||||
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml">GN (from scratch)</a></td>
|
||||
<td align="center">9x</td>
|
||||
<td align="center">N/A</td>
|
||||
<td align="center">0.061</td>
|
||||
<td align="center">7.2</td>
|
||||
<td align="center">43.7</td>
|
||||
<td align="center">39.6</td>
|
||||
<td align="center">183808979</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/model_final_da7b4c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_syncbn -->
|
||||
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml">SyncBN (from scratch)</a></td>
|
||||
<td align="center">9x</td>
|
||||
<td align="center">N/A</td>
|
||||
<td align="center">0.055</td>
|
||||
<td align="center">7.2</td>
|
||||
<td align="center">43.6</td>
|
||||
<td align="center">39.3</td>
|
||||
<td align="center">184226666</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/model_final_5ce33e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
A few very large models trained for a long time, for demo purposes. They are trained using multiple machines:
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'Misc/panoptic_*dconv*' 'Misc/cascade_*152*' --name "Panoptic FPN R101" "Mask R-CNN X152" --fields inference_speed mem box_AP mask_AP PQ
|
||||
# manually add TTA results
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">PQ</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: panoptic_fpn_R_101_dconv_cascade_gn_3x -->
|
||||
<tr><td align="left"><a href="configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml">Panoptic FPN R101</a></td>
|
||||
<td align="center">0.098</td>
|
||||
<td align="center">11.4</td>
|
||||
<td align="center">47.4</td>
|
||||
<td align="center">41.3</td>
|
||||
<td align="center">46.1</td>
|
||||
<td align="center">139797668</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/model_final_be35db.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
|
||||
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml">Mask R-CNN X152</a></td>
|
||||
<td align="center">0.234</td>
|
||||
<td align="center">15.1</td>
|
||||
<td align="center">50.2</td>
|
||||
<td align="center">44.0</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">18131413</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/model_0039999_e76410.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: TTA cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
|
||||
<tr><td align="left">above + test-time aug.</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center">51.9</td>
|
||||
<td align="center">45.9</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
</tr>
|
||||
</tbody></table>
|
59
README.md
59
README.md
|
@ -1,2 +1,57 @@
|
|||
# OWOD
|
||||
Open-World Object Detection
|
||||
<img src=".github/Detectron2-Logo-Horz.svg" width="300" >
|
||||
|
||||
Detectron2 is Facebook AI Research's next generation software system
|
||||
that implements state-of-the-art object detection algorithms.
|
||||
It is a ground-up rewrite of the previous version,
|
||||
[Detectron](https://github.com/facebookresearch/Detectron/),
|
||||
and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
|
||||
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/>
|
||||
</div>
|
||||
|
||||
### What's New
|
||||
* It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
|
||||
* Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend,
|
||||
DeepLab, etc.
|
||||
* Can be used as a library to support [different projects](projects/) on top of it.
|
||||
We'll open source more research projects in this way.
|
||||
* It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
|
||||
|
||||
See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
|
||||
to see more demos and learn about detectron2.
|
||||
|
||||
## Installation
|
||||
|
||||
See [INSTALL.md](INSTALL.md).
|
||||
|
||||
## Quick Start
|
||||
|
||||
See [GETTING_STARTED.md](GETTING_STARTED.md),
|
||||
or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
|
||||
|
||||
Learn more at our [documentation](https://detectron2.readthedocs.org).
|
||||
And see [projects/](projects/) for some projects that are built on top of detectron2.
|
||||
|
||||
## Model Zoo and Baselines
|
||||
|
||||
We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
|
||||
|
||||
|
||||
## License
|
||||
|
||||
Detectron2 is released under the [Apache 2.0 license](LICENSE).
|
||||
|
||||
## Citing Detectron2
|
||||
|
||||
If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
|
||||
|
||||
```BibTeX
|
||||
@misc{wu2019detectron2,
|
||||
author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
|
||||
Wan-Yen Lo and Ross Girshick},
|
||||
title = {Detectron2},
|
||||
howpublished = {\url{https://github.com/facebookresearch/detectron2}},
|
||||
year = {2019}
|
||||
}
|
||||
```
|
||||
|
|
|
@ -0,0 +1,18 @@
|
|||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
RPN:
|
||||
PRE_NMS_TOPK_TEST: 6000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "Res5ROIHeads"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
|
@ -0,0 +1,31 @@
|
|||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res5"]
|
||||
RES5_DILATION: 2
|
||||
RPN:
|
||||
IN_FEATURES: ["res5"]
|
||||
PRE_NMS_TOPK_TEST: 6000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["res5"]
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
|
@ -0,0 +1,42 @@
|
|||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
BACKBONE:
|
||||
NAME: "build_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||||
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||||
RPN:
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||||
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||||
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||||
# Detectron1 uses 2000 proposals per-batch,
|
||||
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||||
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||||
POST_NMS_TOPK_TRAIN: 1000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
|
@ -0,0 +1,25 @@
|
|||
MODEL:
|
||||
META_ARCHITECTURE: "RetinaNet"
|
||||
BACKBONE:
|
||||
NAME: "build_retinanet_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res3", "res4", "res5"]
|
||||
RETINANET:
|
||||
IOU_THRESHOLDS: [0.4, 0.5]
|
||||
IOU_LABELS: [0, -1, 1]
|
||||
SMOOTH_L1_LOSS_BETA: 0.0
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
|
@ -0,0 +1,17 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
LOAD_PROPOSALS: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
PROPOSAL_GENERATOR:
|
||||
NAME: "PrecomputedProposals"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
|
||||
TEST: ("coco_2017_val",)
|
||||
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
||||
DATALOADER:
|
||||
# proposals are part of the dataset_dicts, and take a lot of RAM
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,6 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,6 @@
|
|||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,6 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,13 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: False
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,8 @@
|
|||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,5 @@
|
|||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,8 @@
|
|||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,10 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "ProposalNetwork"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
RPN:
|
||||
PRE_NMS_TOPK_TEST: 12000
|
||||
POST_NMS_TOPK_TEST: 2000
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "ProposalNetwork"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
RPN:
|
||||
POST_NMS_TOPK_TEST: 2000
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,6 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,6 @@
|
|||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,6 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,12 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
RPN:
|
||||
BBOX_REG_LOSS_TYPE: "giou"
|
||||
BBOX_REG_LOSS_WEIGHT: 2.0
|
||||
ROI_BOX_HEAD:
|
||||
BBOX_REG_LOSS_TYPE: "giou"
|
||||
BBOX_REG_LOSS_WEIGHT: 10.0
|
|
@ -0,0 +1,9 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,13 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,15 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
KEYPOINT_ON: True
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 0.5 # Keypoint AP degrades (though box AP improves) when using plain L1 loss
|
||||
RPN:
|
||||
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
|
||||
# 1000 proposals per-image is found to hurt box AP.
|
||||
# Therefore we increase it to 1500 per-image.
|
||||
POST_NMS_TOPK_TRAIN: 1500
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_train",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
|
@ -0,0 +1,8 @@
|
|||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,5 @@
|
|||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,8 @@
|
|||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,12 @@
|
|||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,11 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "PanopticFPN"
|
||||
MASK_ON: True
|
||||
SEM_SEG_HEAD:
|
||||
LOSS_WEIGHT: 0.5
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train_panoptic_separated",)
|
||||
TEST: ("coco_2017_val_panoptic_separated",)
|
||||
DATALOADER:
|
||||
FILTER_EMPTY_ANNOTATIONS: False
|
|
@ -0,0 +1,8 @@
|
|||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,5 @@
|
|||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
|
@ -0,0 +1,8 @@
|
|||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,27 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
# WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
# For better, more stable performance initialize from COCO
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
|
||||
MASK_ON: True
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 8
|
||||
# This is similar to the setting used in Mask R-CNN paper, Appendix A
|
||||
# But there are some differences, e.g., we did not initialize the output
|
||||
# layer using the corresponding classes from COCO
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (800, 832, 864, 896, 928, 960, 992, 1024)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "choice"
|
||||
MIN_SIZE_TEST: 1024
|
||||
MAX_SIZE_TRAIN: 2048
|
||||
MAX_SIZE_TEST: 2048
|
||||
DATASETS:
|
||||
TRAIN: ("cityscapes_fine_instance_seg_train",)
|
||||
TEST: ("cityscapes_fine_instance_seg_val",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.01
|
||||
STEPS: (18000,)
|
||||
MAX_ITER: 24000
|
||||
IMS_PER_BATCH: 8
|
||||
TEST:
|
||||
EVAL_PERIOD: 8000
|
|
@ -0,0 +1,83 @@
|
|||
|
||||
Detectron2 model zoo's experimental settings and a few implementation details are different from Detectron.
|
||||
|
||||
The differences in implementation details are shared in
|
||||
[Compatibility with Other Libraries](../../docs/notes/compatibility.md).
|
||||
|
||||
The differences in model zoo's experimental settings include:
|
||||
* Use scale augmentation during training. This improves AP with lower training cost.
|
||||
* Use L1 loss instead of smooth L1 loss for simplicity. This sometimes improves box AP but may
|
||||
affect other AP.
|
||||
* Use `POOLER_SAMPLING_RATIO=0` instead of 2. This does not significantly affect AP.
|
||||
* Use `ROIAlignV2`. This does not significantly affect AP.
|
||||
|
||||
In this directory, we provide a few configs that __do not__ have the above changes.
|
||||
They mimic Detectron's behavior as close as possible,
|
||||
and provide a fair comparison of accuracy and speed against Detectron.
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'Detectron1-Comparisons/*.yaml' --name "Faster R-CNN" "Keypoint R-CNN" "Mask R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP keypoint_AP --base-dir ../../../configs/Detectron1-Comparisons
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">kp.<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: faster_rcnn_R_50_FPN_noaug_1x -->
|
||||
<tr><td align="left"><a href="faster_rcnn_R_50_FPN_noaug_1x.yaml">Faster R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.219</td>
|
||||
<td align="center">0.038</td>
|
||||
<td align="center">3.1</td>
|
||||
<td align="center">36.9</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center">137781054</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/model_final_7ab50c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="keypoint_rcnn_R_50_FPN_1x.yaml">Keypoint R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.313</td>
|
||||
<td align="center">0.071</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">53.1</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">64.2</td>
|
||||
<td align="center">137781195</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/model_final_cce136.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_noaug_1x -->
|
||||
<tr><td align="left"><a href="mask_rcnn_R_50_FPN_noaug_1x.yaml">Mask R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.273</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">37.8</td>
|
||||
<td align="center">34.9</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">137781281</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/model_final_62ca52.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
## Comparisons:
|
||||
|
||||
* Faster R-CNN: Detectron's AP is 36.7, similar to ours.
|
||||
* Keypoint R-CNN: Detectron's AP is box 53.6, keypoint 64.2. Fixing a Detectron's
|
||||
[bug](https://github.com/facebookresearch/Detectron/issues/459) lead to a drop in box AP, and can be
|
||||
compensated back by some parameter tuning.
|
||||
* Mask R-CNN: Detectron's AP is box 37.7, mask 33.9. We're 1 AP better in mask AP, due to more correct implementation.
|
||||
|
||||
For speed comparison, see [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html).
|
|
@ -0,0 +1,17 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
INPUT:
|
||||
# no scale augmentation
|
||||
MIN_SIZE_TRAIN: (800, )
|
|
@ -0,0 +1,27 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
ROI_KEYPOINT_HEAD:
|
||||
POOLER_RESOLUTION: 14
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2
|
||||
# 1000 proposals per-image is found to hurt box AP.
|
||||
# Therefore we increase it to 1500 per-image.
|
||||
POST_NMS_TOPK_TRAIN: 1500
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_train",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
|
@ -0,0 +1,20 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
ROI_MASK_HEAD:
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
INPUT:
|
||||
# no scale augmentation
|
||||
MIN_SIZE_TRAIN: (800, )
|
|
@ -0,0 +1,19 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
|
@ -0,0 +1,19 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
|
@ -0,0 +1,23 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
|
@ -0,0 +1,22 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1203
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v1_train",)
|
||||
TEST: ("lvis_v1_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
SOLVER:
|
||||
STEPS: (120000, 160000)
|
||||
MAX_ITER: 180000 # 180000 * 16 / 100000 ~ 28.8 epochs
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
|
@ -0,0 +1,22 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1203
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v1_train",)
|
||||
TEST: ("lvis_v1_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
SOLVER:
|
||||
STEPS: (120000, 160000)
|
||||
MAX_ITER: 180000 # 180000 * 16 / 100000 ~ 28.8 epochs
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
|
@ -0,0 +1,26 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1203
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v1_train",)
|
||||
TEST: ("lvis_v1_val",)
|
||||
SOLVER:
|
||||
STEPS: (120000, 160000)
|
||||
MAX_ITER: 180000 # 180000 * 16 / 100000 ~ 28.8 epochs
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
|
@ -0,0 +1,12 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
|
@ -0,0 +1,15 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,36 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 152
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
ROI_HEADS:
|
||||
NAME: "CascadeROIHeads"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NUM_CONV: 8
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 128
|
||||
STEPS: (35000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.16
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
|
@ -0,0 +1,10 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
CLS_AGNOSTIC_MASK: True
|
|
@ -0,0 +1,8 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
||||
DEFORM_MODULATED: False
|
|
@ -0,0 +1,11 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
||||
DEFORM_MODULATED: False
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,21 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-50-GN"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
NORM: "GN"
|
||||
STRIDE_IN_1X1: False
|
||||
FPN:
|
||||
NORM: "GN"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "GN"
|
||||
SOLVER:
|
||||
# 3x schedule
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
|
@ -0,0 +1,24 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
NORM: "SyncBN"
|
||||
STRIDE_IN_1X1: True
|
||||
FPN:
|
||||
NORM: "SyncBN"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "SyncBN"
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "SyncBN"
|
||||
SOLVER:
|
||||
# 3x schedule
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
||||
TEST:
|
||||
PRECISE_BN:
|
||||
ENABLED: True
|
|
@ -0,0 +1,26 @@
|
|||
# A large PanopticFPN for demo purposes.
|
||||
# Use GN on backbone to support semantic seg.
|
||||
# Use Cascade + Deform Conv to improve localization.
|
||||
_BASE_: "../COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-101-GN"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
NORM: "GN"
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
STRIDE_IN_1X1: False
|
||||
FPN:
|
||||
NORM: "GN"
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
STEPS: (105000, 125000)
|
||||
MAX_ITER: 135000
|
||||
IMS_PER_BATCH: 32
|
||||
BASE_LR: 0.04
|
|
@ -0,0 +1,13 @@
|
|||
_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
|
||||
MODEL:
|
||||
# Train from random initialization.
|
||||
WEIGHTS: ""
|
||||
# It makes sense to divide by STD when training from scratch
|
||||
# But it seems to make no difference on the results and C2's models didn't do this.
|
||||
# So we keep things consistent with C2.
|
||||
# PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
MASK_ON: True
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
|
@ -0,0 +1,19 @@
|
|||
_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
|
||||
MODEL:
|
||||
PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
WEIGHTS: ""
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
SOLVER:
|
||||
# 9x schedule
|
||||
IMS_PER_BATCH: 64 # 4x the standard
|
||||
STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
|
||||
MAX_ITER: 202500 # 90k * 9 / 4
|
||||
BASE_LR: 0.08
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
|
@ -0,0 +1,19 @@
|
|||
_BASE_: "mask_rcnn_R_50_FPN_3x_syncbn.yaml"
|
||||
MODEL:
|
||||
PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
WEIGHTS: ""
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
SOLVER:
|
||||
# 9x schedule
|
||||
IMS_PER_BATCH: 64 # 4x the standard
|
||||
STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
|
||||
MAX_ITER: 202500 # 90k * 9 / 4
|
||||
BASE_LR: 0.08
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
|
@ -0,0 +1,11 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train_panoptic_stuffonly",)
|
||||
TEST: ("coco_2017_val_panoptic_stuffonly",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
|
@ -0,0 +1,18 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 20
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
|
||||
MIN_SIZE_TEST: 800
|
||||
DATASETS:
|
||||
TRAIN: ('voc_2007_trainval', 'voc_2012_trainval')
|
||||
TEST: ('voc_2007_test',)
|
||||
SOLVER:
|
||||
STEPS: (12000, 16000)
|
||||
MAX_ITER: 18000 # 17.4 epochs
|
||||
WARMUP_ITERS: 100
|
|
@ -0,0 +1,18 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 20
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
|
||||
MIN_SIZE_TEST: 800
|
||||
DATASETS:
|
||||
TRAIN: ('voc_2007_trainval', 'voc_2012_trainval')
|
||||
TEST: ('voc_2007_test',)
|
||||
SOLVER:
|
||||
STEPS: (12000, 16000)
|
||||
MAX_ITER: 18000 # 17.4 epochs
|
||||
WARMUP_ITERS: 100
|
|
@ -0,0 +1 @@
|
|||
These are quick configs for performance or accuracy regression tracking purposes.
|
|
@ -0,0 +1,7 @@
|
|||
_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 50.18, 0.02], ["segm", "AP", 43.87, 0.02]]
|
|
@ -0,0 +1,11 @@
|
|||
_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,7 @@
|
|||
_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 45.70, 0.02]]
|
|
@ -0,0 +1,15 @@
|
|||
_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
||||
TEST: ("coco_2017_val_100",)
|
||||
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,7 @@
|
|||
_BASE_: "../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
|
||||
DATASETS:
|
||||
TEST: ("keypoints_coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 52.47, 0.02], ["keypoints", "AP", 67.36, 0.02]]
|
|
@ -0,0 +1,14 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_val_100",)
|
||||
TEST: ("keypoints_coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,30 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
BATCH_SIZE_PER_IMAGE: 256
|
||||
NUM_CLASSES: 1
|
||||
ROI_KEYPOINT_HEAD:
|
||||
POOLER_RESOLUTION: 14
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: False
|
||||
LOSS_WEIGHT: 4.0
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_val",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
SOLVER:
|
||||
WARMUP_FACTOR: 0.33333333
|
||||
WARMUP_ITERS: 100
|
||||
STEPS: (5500, 5800)
|
||||
MAX_ITER: 6000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 55.35, 1.0], ["keypoints", "AP", 76.91, 1.0]]
|
|
@ -0,0 +1,28 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
BATCH_SIZE_PER_IMAGE: 256
|
||||
NUM_CLASSES: 1
|
||||
ROI_KEYPOINT_HEAD:
|
||||
POOLER_RESOLUTION: 14
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_val",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
SOLVER:
|
||||
WARMUP_FACTOR: 0.33333333
|
||||
WARMUP_ITERS: 100
|
||||
STEPS: (5500, 5800)
|
||||
MAX_ITER: 6000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 53.5, 1.0], ["keypoints", "AP", 72.4, 1.0]]
|
|
@ -0,0 +1,18 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.001
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
CLIP_TYPE: "value"
|
||||
CLIP_VALUE: 1.0
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,7 @@
|
|||
_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 47.37, 0.02], ["segm", "AP", 40.99, 0.02]]
|
|
@ -0,0 +1,14 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.001
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,22 @@
|
|||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
ROI_HEADS:
|
||||
BATCH_SIZE_PER_IMAGE: 256
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val",)
|
||||
TEST: ("coco_2017_val",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (600,)
|
||||
MAX_SIZE_TRAIN: 1000
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1000
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 8 # base uses 16
|
||||
WARMUP_FACTOR: 0.33333
|
||||
WARMUP_ITERS: 100
|
||||
STEPS: (11000, 11600)
|
||||
MAX_ITER: 12000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 41.88, 0.7], ["segm", "AP", 33.79, 0.5]]
|
|
@ -0,0 +1,7 @@
|
|||
_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 47.44, 0.02], ["segm", "AP", 42.94, 0.02]]
|
|
@ -0,0 +1,10 @@
|
|||
_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 47.34, 0.02], ["segm", "AP", 42.67, 0.02], ["bbox_TTA", "AP", 49.11, 0.02], ["segm_TTA", "AP", 45.04, 0.02]]
|
||||
AUG:
|
||||
ENABLED: True
|
||||
MIN_SIZES: (700, 800) # to save some time
|
|
@ -0,0 +1,14 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,6 @@
|
|||
_BASE_: "./mask_rcnn_R_50_FPN_training_acc_test.yaml"
|
||||
MODEL:
|
||||
ROI_BOX_HEAD:
|
||||
TRAIN_ON_PRED_BOXES: True
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 42.6, 1.0], ["segm", "AP", 35.8, 0.8]]
|
|
@ -0,0 +1,21 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
ROI_HEADS:
|
||||
BATCH_SIZE_PER_IMAGE: 256
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val",)
|
||||
TEST: ("coco_2017_val",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (600,)
|
||||
MAX_SIZE_TRAIN: 1000
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1000
|
||||
SOLVER:
|
||||
WARMUP_FACTOR: 0.3333333
|
||||
WARMUP_ITERS: 100
|
||||
STEPS: (5500, 5800)
|
||||
MAX_ITER: 6000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 42.5, 1.0], ["segm", "AP", 35.8, 0.8]]
|
|
@ -0,0 +1,7 @@
|
|||
_BASE_: "../COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100_panoptic_separated",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 46.47, 0.02], ["segm", "AP", 43.39, 0.02], ["sem_seg", "mIoU", 42.55, 0.02], ["panoptic_seg", "PQ", 38.99, 0.02]]
|
|
@ -0,0 +1,19 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "PanopticFPN"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SEM_SEG_HEAD:
|
||||
LOSS_WEIGHT: 0.5
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100_panoptic_separated",)
|
||||
TEST: ("coco_2017_val_100_panoptic_separated",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 1
|
|
@ -0,0 +1,20 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "PanopticFPN"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SEM_SEG_HEAD:
|
||||
LOSS_WEIGHT: 0.5
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_panoptic_separated",)
|
||||
TEST: ("coco_2017_val_panoptic_separated",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.01
|
||||
WARMUP_FACTOR: 0.001
|
||||
WARMUP_ITERS: 500
|
||||
STEPS: (5500,)
|
||||
MAX_ITER: 7000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 46.70, 1.1], ["segm", "AP", 39.0, 0.7], ["sem_seg", "mIoU", 64.73, 1.3], ["panoptic_seg", "PQ", 48.13, 0.8]]
|
|
@ -0,0 +1,7 @@
|
|||
_BASE_: "../COCO-Detection/retinanet_R_50_FPN_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-Detection/retinanet_R_50_FPN_3x/190397829/model_final_5bd44e.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 44.45, 0.02]]
|
|
@ -0,0 +1,13 @@
|
|||
_BASE_: "../COCO-Detection/retinanet_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,7 @@
|
|||
_BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["box_proposals", "AR@1000", 58.16, 0.02]]
|
|
@ -0,0 +1,13 @@
|
|||
_BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
BASE_LR: 0.005
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,10 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://semantic_R_50_FPN_1x/111802073/model_final_c18079783c55a94968edc28b7101c5f0.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100_panoptic_stuffonly",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["sem_seg", "mIoU", 39.53, 0.02], ["sem_seg", "mACC", 51.50, 0.02]]
|
|
@ -0,0 +1,18 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100_panoptic_stuffonly",)
|
||||
TEST: ("coco_2017_val_100_panoptic_stuffonly",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
|
@ -0,0 +1,20 @@
|
|||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_panoptic_stuffonly",)
|
||||
TEST: ("coco_2017_val_panoptic_stuffonly",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.01
|
||||
WARMUP_FACTOR: 0.001
|
||||
WARMUP_ITERS: 300
|
||||
STEPS: (5500,)
|
||||
MAX_ITER: 7000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["sem_seg", "mIoU", 76.51, 1.0], ["sem_seg", "mACC", 83.25, 1.0]]
|
||||
INPUT:
|
||||
# no scale augmentation
|
||||
MIN_SIZE_TRAIN: (800, )
|
|
@ -0,0 +1,140 @@
|
|||
# Use Builtin Datasets
|
||||
|
||||
A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog)
|
||||
for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc).
|
||||
This document explains how to setup the builtin datasets so they can be used by the above APIs.
|
||||
[Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`,
|
||||
and how to add new datasets to them.
|
||||
|
||||
Detectron2 has builtin support for a few datasets.
|
||||
The datasets are assumed to exist in a directory specified by the environment variable
|
||||
`DETECTRON2_DATASETS`.
|
||||
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
|
||||
```
|
||||
$DETECTRON2_DATASETS/
|
||||
coco/
|
||||
lvis/
|
||||
cityscapes/
|
||||
VOC20{07,12}/
|
||||
```
|
||||
|
||||
You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`.
|
||||
If left unset, the default is `./datasets` relative to your current working directory.
|
||||
|
||||
The [model zoo](https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md)
|
||||
contains configs and models that use these builtin datasets.
|
||||
|
||||
## Expected dataset structure for [COCO instance/keypoint detection](https://cocodataset.org/#download):
|
||||
|
||||
```
|
||||
coco/
|
||||
annotations/
|
||||
instances_{train,val}2017.json
|
||||
person_keypoints_{train,val}2017.json
|
||||
{train,val}2017/
|
||||
# image files that are mentioned in the corresponding json
|
||||
```
|
||||
|
||||
You can use the 2014 version of the dataset as well.
|
||||
|
||||
Some of the builtin tests (`dev/run_*_tests.sh`) uses a tiny version of the COCO dataset,
|
||||
which you can download with `./prepare_for_tests.sh`.
|
||||
|
||||
## Expected dataset structure for PanopticFPN:
|
||||
|
||||
Extract panoptic annotations from [COCO website](https://cocodataset.org/#download)
|
||||
into the following structure:
|
||||
```
|
||||
coco/
|
||||
annotations/
|
||||
panoptic_{train,val}2017.json
|
||||
panoptic_{train,val}2017/ # png annotations
|
||||
panoptic_stuff_{train,val}2017/ # generated by the script mentioned below
|
||||
```
|
||||
|
||||
Install panopticapi by:
|
||||
```
|
||||
pip install git+https://github.com/cocodataset/panopticapi.git
|
||||
```
|
||||
Then, run `python prepare_panoptic_fpn.py`, to extract semantic annotations from panoptic annotations.
|
||||
|
||||
## Expected dataset structure for [LVIS instance segmentation](https://www.lvisdataset.org/dataset):
|
||||
```
|
||||
coco/
|
||||
{train,val,test}2017/
|
||||
lvis/
|
||||
lvis_v0.5_{train,val}.json
|
||||
lvis_v0.5_image_info_test.json
|
||||
lvis_v1_{train,val}.json
|
||||
lvis_v1_image_info_test{,_challenge}.json
|
||||
```
|
||||
|
||||
Install lvis-api by:
|
||||
```
|
||||
pip install git+https://github.com/lvis-dataset/lvis-api.git
|
||||
```
|
||||
|
||||
To evaluate models trained on the COCO dataset using LVIS annotations,
|
||||
run `python prepare_cocofied_lvis.py` to prepare "cocofied" LVIS annotations.
|
||||
|
||||
## Expected dataset structure for [cityscapes](https://www.cityscapes-dataset.com/downloads/):
|
||||
```
|
||||
cityscapes/
|
||||
gtFine/
|
||||
train/
|
||||
aachen/
|
||||
color.png, instanceIds.png, labelIds.png, polygons.json,
|
||||
labelTrainIds.png
|
||||
...
|
||||
val/
|
||||
test/
|
||||
# below are generated Cityscapes panoptic annotation
|
||||
cityscapes_panoptic_train.json
|
||||
cityscapes_panoptic_train/
|
||||
cityscapes_panoptic_val.json
|
||||
cityscapes_panoptic_val/
|
||||
cityscapes_panoptic_test.json
|
||||
cityscapes_panoptic_test/
|
||||
leftImg8bit/
|
||||
train/
|
||||
val/
|
||||
test/
|
||||
```
|
||||
Install cityscapes scripts by:
|
||||
```
|
||||
pip install git+https://github.com/mcordts/cityscapesScripts.git
|
||||
```
|
||||
|
||||
Note: to create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with:
|
||||
```
|
||||
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createTrainIdLabelImgs.py
|
||||
```
|
||||
These files are not needed for instance segmentation.
|
||||
|
||||
Note: to generate Cityscapes panoptic dataset, run cityscapesescript with:
|
||||
```
|
||||
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createPanopticImgs.py
|
||||
```
|
||||
These files are not needed for semantic and instance segmentation.
|
||||
|
||||
## Expected dataset structure for [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/index.html):
|
||||
```
|
||||
VOC20{07,12}/
|
||||
Annotations/
|
||||
ImageSets/
|
||||
Main/
|
||||
trainval.txt
|
||||
test.txt
|
||||
# train.txt or val.txt, if you use these splits
|
||||
JPEGImages/
|
||||
```
|
||||
|
||||
## Expected dataset structure for [ADE20k Scene Parsing](http://sceneparsing.csail.mit.edu/):
|
||||
```
|
||||
ADEChallengeData2016/
|
||||
annotations/
|
||||
annotations_detectron2/
|
||||
images/
|
||||
objectInfo150.txt
|
||||
```
|
||||
The directory `annotations_detectron2` is generated by running `python prepare_ade20k_sem_seg.py`.
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue