# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import numpy as np import os import sys import tempfile import xml.etree.ElementTree as ET import matplotlib.pyplot as plt from collections import OrderedDict, defaultdict from functools import lru_cache import torch from torch.distributions.weibull import Weibull from torch.distributions.transforms import AffineTransform from torch.distributions.transformed_distribution import TransformedDistribution from fvcore.common.file_io import PathManager from detectron2.data import MetadataCatalog from detectron2.utils import comm from .evaluator import DatasetEvaluator np.set_printoptions(threshold=sys.maxsize) class PascalVOCDetectionEvaluator(DatasetEvaluator): """ Evaluate Pascal VOC style AP for Pascal VOC dataset. It contains a synchronization, therefore has to be called from all ranks. Note that the concept of AP can be implemented in different ways and may not produce identical results. This class mimics the implementation of the official Pascal VOC Matlab API, and should produce similar but not identical results to the official API. """ def __init__(self, dataset_name, cfg=None): """ Args: dataset_name (str): name of the dataset, e.g., "voc_2007_test" """ self._dataset_name = dataset_name meta = MetadataCatalog.get(dataset_name) self._anno_file_template = os.path.join(meta.dirname, "Annotations", "{}.xml") self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt") self._class_names = meta.thing_classes assert meta.year in [2007, 2012], meta.year self._is_2007 = False # self._is_2007 = meta.year == 2007 self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) if cfg is not None: self.prev_intro_cls = cfg.OWOD.PREV_INTRODUCED_CLS self.curr_intro_cls = cfg.OWOD.CUR_INTRODUCED_CLS self.total_num_class = cfg.MODEL.ROI_HEADS.NUM_CLASSES self.unknown_class_index = self.total_num_class - 1 self.num_seen_classes = self.prev_intro_cls + self.curr_intro_cls self.known_classes = self._class_names[:self.num_seen_classes] param_save_location = os.path.join(cfg.OUTPUT_DIR,'energy_dist_' + str(self.num_seen_classes) + '.pkl') self.energy_distribution_loaded = False if os.path.isfile(param_save_location) and os.access(param_save_location, os.R_OK): self._logger.info('Loading energy distribution from ' + param_save_location) params = torch.load(param_save_location) unknown = params[0] known = params[1] self.unk_dist = self.create_distribution(unknown['scale_unk'], unknown['shape_unk'], unknown['shift_unk']) self.known_dist = self.create_distribution(known['scale_known'], known['shape_known'], known['shift_known']) self.energy_distribution_loaded = True else: self._logger.info('Energy distribution is not found at ' + param_save_location) def create_distribution(self, scale, shape, shift): wd = Weibull(scale=scale, concentration=shape) transforms = AffineTransform(loc=shift, scale=1.) weibull = TransformedDistribution(wd, transforms) return weibull def compute_prob(self, x, distribution): eps_radius = 0.5 num_eval_points = 100 start_x = x - eps_radius end_x = x + eps_radius step = (end_x - start_x) / num_eval_points dx = torch.linspace(x - eps_radius, x + eps_radius, num_eval_points) pdf = distribution.log_prob(dx).exp() prob = torch.sum(pdf * step) return prob def reset(self): self._predictions = defaultdict(list) # class name -> list of prediction strings def update_label_based_on_energy(self, logits, classes): if not self.energy_distribution_loaded: return classes else: cls = classes lse = torch.logsumexp(logits[:, :self.num_seen_classes], dim=1) for i, energy in enumerate(lse): p_unk = self.compute_prob(energy, self.unk_dist) p_known = self.compute_prob(energy, self.known_dist) if torch.isnan(p_unk) or torch.isnan(p_known): continue if p_unk <= p_known: if cls[i] == self.unknown_class_index: cls[i] = -100 else: if cls[i] != self.unknown_class_index: cls[i] = self.unknown_class_index return cls def process(self, inputs, outputs): for input, output in zip(inputs, outputs): image_id = input["image_id"] instances = output["instances"].to(self._cpu_device) boxes = instances.pred_boxes.tensor.numpy() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() logits = instances.logits classes = self.update_label_based_on_energy(logits, classes) for box, score, cls in zip(boxes, scores, classes): if cls == -100: continue xmin, ymin, xmax, ymax = box # The inverse of data loading logic in `datasets/pascal_voc.py` xmin += 1 ymin += 1 self._predictions[cls].append( f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}" ) def compute_avg_precision_at_many_recall_level_for_unk(self, precisions, recalls): precs = {} for r in range(1, 10): r = r/10 p = self.compute_avg_precision_at_a_recall_level_for_unk(precisions, recalls, recall_level=r) precs[r] = p return precs def compute_avg_precision_at_a_recall_level_for_unk(self, precisions, recalls, recall_level=0.5): precs = {} for iou, recall in recalls.items(): prec = [] for cls_id, rec in enumerate(recall): if cls_id == self.unknown_class_index and len(rec)>0: p = precisions[iou][cls_id][min(range(len(rec)), key=lambda i: abs(rec[i] - recall_level))] prec.append(p) if len(prec) > 0: precs[iou] = np.mean(prec) else: precs[iou] = 0 return precs def compute_WI_at_many_recall_level(self, recalls, tp_plus_fp_cs, fp_os): wi_at_recall = {} for r in range(1, 10): r = r/10 wi = self.compute_WI_at_a_recall_level(recalls, tp_plus_fp_cs, fp_os, recall_level=r) wi_at_recall[r] = wi return wi_at_recall def compute_WI_at_a_recall_level(self, recalls, tp_plus_fp_cs, fp_os, recall_level=0.5): wi_at_iou = {} for iou, recall in recalls.items(): tp_plus_fps = [] fps = [] for cls_id, rec in enumerate(recall): if cls_id in range(self.num_seen_classes) and len(rec) > 0: index = min(range(len(rec)), key=lambda i: abs(rec[i] - recall_level)) tp_plus_fp = tp_plus_fp_cs[iou][cls_id][index] tp_plus_fps.append(tp_plus_fp) fp = fp_os[iou][cls_id][index] fps.append(fp) if len(tp_plus_fps) > 0: wi_at_iou[iou] = np.mean(fps) / np.mean(tp_plus_fps) else: wi_at_iou[iou] = 0 return wi_at_iou def evaluate(self): """ Returns: dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75". """ all_predictions = comm.gather(self._predictions, dst=0) if not comm.is_main_process(): return predictions = defaultdict(list) for predictions_per_rank in all_predictions: for clsid, lines in predictions_per_rank.items(): predictions[clsid].extend(lines) del all_predictions self._logger.info( "Evaluating {} using {} metric. " "Note that results do not use the official Matlab API.".format( self._dataset_name, 2007 if self._is_2007 else 2012 ) ) with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname: res_file_template = os.path.join(dirname, "{}.txt") aps = defaultdict(list) # iou -> ap per class recs = defaultdict(list) precs = defaultdict(list) all_recs = defaultdict(list) all_precs = defaultdict(list) unk_det_as_knowns = defaultdict(list) num_unks = defaultdict(list) tp_plus_fp_cs = defaultdict(list) fp_os = defaultdict(list) for cls_id, cls_name in enumerate(self._class_names): lines = predictions.get(cls_id, [""]) self._logger.info(cls_name + " has " + str(len(lines)) + " predictions.") with open(res_file_template.format(cls_name), "w") as f: f.write("\n".join(lines)) # for thresh in range(50, 100, 5): thresh = 50 rec, prec, ap, unk_det_as_known, num_unk, tp_plus_fp_closed_set, fp_open_set = voc_eval( res_file_template, self._anno_file_template, self._image_set_path, cls_name, ovthresh=thresh / 100.0, use_07_metric=self._is_2007, known_classes=self.known_classes ) aps[thresh].append(ap * 100) unk_det_as_knowns[thresh].append(unk_det_as_known) num_unks[thresh].append(num_unk) all_precs[thresh].append(prec) all_recs[thresh].append(rec) tp_plus_fp_cs[thresh].append(tp_plus_fp_closed_set) fp_os[thresh].append(fp_open_set) try: recs[thresh].append(rec[-1] * 100) precs[thresh].append(prec[-1] * 100) except: recs[thresh].append(0) precs[thresh].append(0) wi = self.compute_WI_at_many_recall_level(all_recs, tp_plus_fp_cs, fp_os) self._logger.info('Wilderness Impact: ' + str(wi)) avg_precision_unk = self.compute_avg_precision_at_many_recall_level_for_unk(all_precs, all_recs) self._logger.info('avg_precision: ' + str(avg_precision_unk)) ret = OrderedDict() mAP = {iou: np.mean(x) for iou, x in aps.items()} ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50]} total_num_unk_det_as_known = {iou: np.sum(x) for iou, x in unk_det_as_knowns.items()} total_num_unk = num_unks[50][0] self._logger.info('Absolute OSE (total_num_unk_det_as_known): ' + str(total_num_unk_det_as_known)) self._logger.info('total_num_unk ' + str(total_num_unk)) # Extra logging of class-wise APs avg_precs = list(np.mean([x for _, x in aps.items()], axis=0)) self._logger.info(self._class_names) # self._logger.info("AP__: " + str(['%.1f' % x for x in avg_precs])) self._logger.info("AP50: " + str(['%.1f' % x for x in aps[50]])) self._logger.info("Precisions50: " + str(['%.1f' % x for x in precs[50]])) self._logger.info("Recall50: " + str(['%.1f' % x for x in recs[50]])) # self._logger.info("AP75: " + str(['%.1f' % x for x in aps[75]])) if self.prev_intro_cls > 0: # self._logger.info("\nPrev class AP__: " + str(np.mean(avg_precs[:self.prev_intro_cls]))) self._logger.info("Prev class AP50: " + str(np.mean(aps[50][:self.prev_intro_cls]))) self._logger.info("Prev class Precisions50: " + str(np.mean(precs[50][:self.prev_intro_cls]))) self._logger.info("Prev class Recall50: " + str(np.mean(recs[50][:self.prev_intro_cls]))) # self._logger.info("Prev class AP75: " + str(np.mean(aps[75][:self.prev_intro_cls]))) # self._logger.info("\nCurrent class AP__: " + str(np.mean(avg_precs[self.prev_intro_cls:self.curr_intro_cls]))) self._logger.info("Current class AP50: " + str(np.mean(aps[50][self.prev_intro_cls:self.prev_intro_cls + self.curr_intro_cls]))) self._logger.info("Current class Precisions50: " + str(np.mean(precs[50][self.prev_intro_cls:self.prev_intro_cls + self.curr_intro_cls]))) self._logger.info("Current class Recall50: " + str(np.mean(recs[50][self.prev_intro_cls:self.prev_intro_cls + self.curr_intro_cls]))) # self._logger.info("Current class AP75: " + str(np.mean(aps[75][self.prev_intro_cls:self.curr_intro_cls]))) # self._logger.info("\nKnown AP__: " + str(np.mean(avg_precs[:self.prev_intro_cls + self.curr_intro_cls]))) self._logger.info("Known AP50: " + str(np.mean(aps[50][:self.prev_intro_cls + self.curr_intro_cls]))) self._logger.info("Known Precisions50: " + str(np.mean(precs[50][:self.prev_intro_cls + self.curr_intro_cls]))) self._logger.info("Known Recall50: " + str(np.mean(recs[50][:self.prev_intro_cls + self.curr_intro_cls]))) # self._logger.info("Known AP75: " + str(np.mean(aps[75][:self.prev_intro_cls + self.curr_intro_cls]))) # self._logger.info("\nUnknown AP__: " + str(avg_precs[-1])) self._logger.info("Unknown AP50: " + str(aps[50][-1])) self._logger.info("Unknown Precisions50: " + str(precs[50][-1])) self._logger.info("Unknown Recall50: " + str(recs[50][-1])) # self._logger.info("Unknown AP75: " + str(aps[75][-1])) # self._logger.info("R__: " + str(['%.1f' % x for x in list(np.mean([x for _, x in recs.items()], axis=0))])) # self._logger.info("R50: " + str(['%.1f' % x for x in recs[50]])) # self._logger.info("R75: " + str(['%.1f' % x for x in recs[75]])) # # self._logger.info("P__: " + str(['%.1f' % x for x in list(np.mean([x for _, x in precs.items()], axis=0))])) # self._logger.info("P50: " + str(['%.1f' % x for x in precs[50]])) # self._logger.info("P75: " + str(['%.1f' % x for x in precs[75]])) return ret ############################################################################## # # Below code is modified from # https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Bharath Hariharan # -------------------------------------------------------- """Python implementation of the PASCAL VOC devkit's AP evaluation code.""" @lru_cache(maxsize=None) def parse_rec(filename, known_classes): """Parse a PASCAL VOC xml file.""" VOC_CLASS_NAMES_COCOFIED = [ "airplane", "dining table", "motorcycle", "potted plant", "couch", "tv" ] BASE_VOC_CLASS_NAMES = [ "aeroplane", "diningtable", "motorbike", "pottedplant", "sofa", "tvmonitor" ] try: with PathManager.open(filename) as f: tree = ET.parse(f) except: logger = logging.getLogger(__name__) logger.info('Not able to load: ' + filename + '. Continuing without aboarting...') return None objects = [] for obj in tree.findall("object"): obj_struct = {} cls_name = obj.find("name").text if cls_name in VOC_CLASS_NAMES_COCOFIED: cls_name = BASE_VOC_CLASS_NAMES[VOC_CLASS_NAMES_COCOFIED.index(cls_name)] if cls_name not in known_classes: cls_name = 'unknown' obj_struct["name"] = cls_name # obj_struct["pose"] = obj.find("pose").text # obj_struct["truncated"] = int(obj.find("truncated").text) obj_struct["difficult"] = int(obj.find("difficult").text) bbox = obj.find("bndbox") obj_struct["bbox"] = [ int(bbox.find("xmin").text), int(bbox.find("ymin").text), int(bbox.find("xmax").text), int(bbox.find("ymax").text), ] objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False, known_classes=None): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # first load gt # read list of images with PathManager.open(imagesetfile, "r") as f: lines = f.readlines() imagenames = [x.strip() for x in lines] imagenames_filtered = [] # load annots recs = {} for imagename in imagenames: rec = parse_rec(annopath.format(imagename), tuple(known_classes)) if rec is not None: recs[imagename] = rec imagenames_filtered.append(imagename) imagenames = imagenames_filtered # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj["name"] == classname] bbox = np.array([x["bbox"] for x in R]) difficult = np.array([x["difficult"] for x in R]).astype(np.bool) # difficult = np.array([False for x in R]).astype(np.bool) # treat all "difficult" as GT det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} # read dets detfile = detpath.format(classname) with open(detfile, "r") as f: lines = f.readlines() splitlines = [x.strip().split(" ") for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4) # sort by confidence sorted_ind = np.argsort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) # if 'unknown' not in classname: # return tp, fp, 0 for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1.0, 0.0) ih = np.maximum(iymax - iymin + 1.0, 0.0) inters = iw * ih # union uni = ( (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) - inters ) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R["difficult"][jmax]: if not R["det"][jmax]: tp[d] = 1.0 R["det"][jmax] = 1 else: fp[d] = 1.0 else: fp[d] = 1.0 # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) # plot_pr_curve(prec, rec, classname+'.png') ap = voc_ap(rec, prec, use_07_metric) # print('tp: ' + str(tp[-1])) # print('fp: ' + str(fp[-1])) # print('tp: ') # print(tp) # print('fp: ') # print(fp) ''' Computing Absolute Open-Set Error (A-OSE) and Wilderness Impact (WI) =========== Absolute OSE = # of unknown objects classified as known objects of class 'classname' WI = FP_openset / (TP_closed_set + FP_closed_set) ''' logger = logging.getLogger(__name__) # Finding GT of unknown objects unknown_class_recs = {} n_unk = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj["name"] == 'unknown'] bbox = np.array([x["bbox"] for x in R]) difficult = np.array([x["difficult"] for x in R]).astype(np.bool) det = [False] * len(R) n_unk = n_unk + sum(~difficult) unknown_class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} if classname == 'unknown': return rec, prec, ap, 0, n_unk, None, None # Go down each detection and see if it has an overlap with an unknown object. # If so, it is an unknown object that was classified as known. is_unk = np.zeros(nd) for d in range(nd): R = unknown_class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1.0, 0.0) ih = np.maximum(iymax - iymin + 1.0, 0.0) inters = iw * ih # union uni = ( (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) - inters ) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: is_unk[d] = 1.0 is_unk_sum = np.sum(is_unk) # OSE = is_unk / n_unk # logger.info('Number of unknowns detected knowns (for class '+ classname + ') is ' + str(is_unk)) # logger.info("Num of unknown instances: " + str(n_unk)) # logger.info('OSE: ' + str(OSE)) tp_plus_fp_closed_set = tp+fp fp_open_set = np.cumsum(is_unk) return rec, prec, ap, is_unk_sum, n_unk, tp_plus_fp_closed_set, fp_open_set def plot_pr_curve(precision, recall, filename, base_path='/home/fk1/workspace/OWOD/output/plots/'): fig, ax = plt.subplots() ax.step(recall, precision, color='r', alpha=0.99, where='post') ax.fill_between(recall, precision, alpha=0.2, color='b', step='post') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.savefig(base_path + filename) # print(precision) # print(recall)